A Critical Review on the Factors Affecting the Bond Strength of Direct Restorative Material Alternatives to Amalgam
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Clinical Performance of the Material Alternatives to Amalgam
3.1.1. Clinical Performance of RBCs
3.1.2. Clinical Performance of GICs
3.1.3. Clinical Performance of RMGIC
3.2. Bonding Mechanisms
3.3. Factors Affecting the Bond Strength
3.3.1. Type of Tooth: Primary vs. Permanent Teeth
3.3.2. Tooth Condition: Demineralized/Caries-Affected Dentin vs. Healthy Dentin
3.3.3. Surface Condition: Contamination
3.3.4. Surface Pretreatment
3.3.5. Test Method Variables
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van de Sande, F.H.; Collares, K.; Correa, M.B.; Cenci, M.S.; Demarco, F.F.; Opdam, N. Restoration Survival: Revisiting Patients’ Risk Factors Through a Systematic Literature Review. Oper. Dent. 2016, 41, S7–S26. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Yoshihara, K.; Van Landuyt, K.; Yoshida, Y.; Peumans, M. From Buonocore’s Pioneering Acid-Etch Technique to Self-Adhering Restoratives. A Status Perspective of Rapidly Advancing Dental Adhesive Technology. J. Adhes. Dent. 2020, 22, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.; Kent, B.E. The glass-ionomer cement, a new translucent dental filling material. J. Appl. Chem. Biotechnol. 1971, 21, 313. [Google Scholar] [CrossRef]
- Kent, B.E.; Lewis, B.G.; Wilson, A.D. The properties of a glass ionomer cement. Br. Dent. J. 1973, 135, 322–326. [Google Scholar] [CrossRef]
- Nicholson, J.W. Chemistry of glass-ionomer cements: A review. Biomaterials 1998, 19, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Hill, R. Glass ionomer polyalkenoate cements and related materials: Past, present and future. Br. Dent. J. 2022, 232, 653–657. [Google Scholar] [CrossRef]
- Nicholson, J.W. Maturation processes in glass-ionomer dental cements. Acta Biomater. Odontol. Scand. 2018, 4, 63–71. [Google Scholar] [CrossRef]
- Matsuya, S.; Maeda, T.; Ohta, M. IR and NMR analyses of hardening and maturation of glass-ionomer cement. J. Dent. Res. 1996, 75, 1920–1927. [Google Scholar] [CrossRef]
- Nicholson, J.; Wilson, A. The effect of storage in aqueous solutions on glass-ionomer and zinc polycarboxylate dental cements. J. Mater. Sci. Mater. Med. 2000, 11, 357–360. [Google Scholar] [CrossRef]
- Frankenberger, R.; Sindel, J.; Krämer, N. Viscous glass-ionomer cements: A new alternative to amalgam in the primary dentition? Quintessence Int. 1997, 28, 667–676. [Google Scholar]
- Guggenberger, R.; May, R.; Stefan, K. New trends in glass-ionomer chemistry. Biomaterials 1998, 19, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Zoergiebel, J.; Ilie, N. Evaluation of a conventional glass ionomer cement with new zinc formulation: Effect of coating, aging and storage agents. Clin. Oral Investig. 2013, 17, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Anstice, H.; Nicholson, J. Studies on the structure of light-cured glass-ionomer cements. J. Mater. Sci. Mater. Med. 1992, 3, 447–451. [Google Scholar] [CrossRef]
- Mitra, S. Adhesion to dentin and physical properties of a light-cured glass-ionomer liner/base. J. Dent. Res. 1991, 70, 72–74. [Google Scholar] [CrossRef]
- Uno, S.; Finger, W.J.; Fritz, U. Long-term mechanical characteristics of resin-modified glass ionomer restorative materials. Dent. Mater. 1996, 12, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Berzins, D.W.; Abey, S.; Costache, M.C.; Wilkie, C.A.; Roberts, H.W. Resin-modified glass-ionomer setting reaction competition. J. Dent. Res. 2010, 89, 82–86. [Google Scholar] [CrossRef]
- Nicholson, J.W.; Czarnecka, B. The biocompatibility of resin-modified glass-ionomer cements for dentistry. Dent. Mater. 2008, 24, 1702–1708. [Google Scholar] [CrossRef]
- Yap, A.; Lee, C.M. Water sorption and solubility of resin-modified polyalkenoate cements. J. Oral Rehabil. 1997, 24, 310–314. [Google Scholar] [CrossRef]
- Klee, J.E.; Renn, C.; Elsner, O. Development of Novel Polymer Technology for a New Class of Restorative Dental Materials. J. Adhes. Dent. 2020, 22, 35–45. [Google Scholar] [CrossRef]
- Francois, P.; Fouquet, V.; Attal, J.-P.; Dursun, E. Commercially available fluoride-releasing restorative materials: A review and a proposal for classification. Materials 2020, 13, 2313. [Google Scholar] [CrossRef]
- Ilie, N. Fracture and viscoelastic behavior of novel self-adhesive materials for simplified restoration concepts. J. Mech. Behav. Biomed. Mater. 2022, 125, 104970. [Google Scholar] [CrossRef] [PubMed]
- Wuersching, S.N.; Högg, C.; Kohl, L.; Reichl, F.-X.; Hickel, R.; Kollmuss, M. Leaching components and initial biocompatibility of novel bioactive restorative materials. Dent. Mater. 2023, 39, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Abouelleil, H.; Attik, N.; Chiriac, R.; Toche, F.; Ory, A.; Zayakh, A.; Grosgogeat, B.; Pradelle-Plasse, N. Comparative study of two bioactive dental materials. Dent. Mater. 2024, 40, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Tiskaya, M.; Al-Eesa, N.; Wong, F.; Hill, R. Characterization of the bioactivity of two commercial composites. Dent. Mater. 2019, 35, 1757–1768. [Google Scholar] [CrossRef]
- Wierichs, R.J.; Kramer, E.J.; Meyer-Lueckel, H. Risk Factors for Failure of Direct Restorations in General Dental Practices. J. Dent. Res. 2020, 99, 1039–1046. [Google Scholar] [CrossRef]
- Laske, M.; Opdam, N.J.; Bronkhorst, E.M.; Braspenning, J.C.; Huysmans, M.C. Longevity of direct restorations in Dutch dental practices. Descriptive study out of a practice based research network. J. Dent. 2016, 46, 12–17. [Google Scholar] [CrossRef]
- Demarco, F.F.; Cenci, M.S.; Montagner, A.F.; de Lima, V.P.; Correa, M.B.; Moraes, R.R.; Opdam, N.J.M. Longevity of composite restorations is definitely not only about materials. Dent. Mater. 2023, 39, 1–12. [Google Scholar] [CrossRef]
- Opdam, N.J.; van de Sande, F.H.; Bronkhorst, E.; Cenci, M.S.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.C.; van Dijken, J.W. Longevity of posterior composite restorations: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 943–949. [Google Scholar] [CrossRef]
- Schwendicke, F.; Göstemeyer, G.; Blunck, U.; Paris, S.; Hsu, L.Y.; Tu, Y.K. Directly Placed Restorative Materials: Review and Network Meta-analysis. J. Dent. Res. 2016, 95, 613–622. [Google Scholar] [CrossRef]
- Pallesen, U.; van Dijken, J.W. A randomized controlled 27 years follow up of three resin composites in Class II restorations. J. Dent. 2015, 43, 1547–1558. [Google Scholar] [CrossRef]
- Pallesen, U.; van Dijken, J.W. A randomized controlled 30 years follow up of three conventional resin composites in Class II restorations. Dent. Mater. 2015, 31, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Da Rosa Rodolpho, P.A.; Rodolfo, B.; Collares, K.; Correa, M.B.; Demarco, F.F.; Opdam, N.J.M.; Cenci, M.S.; Moraes, R.R. Clinical performance of posterior resin composite restorations after up to 33 years. Dent. Mater. 2022, 38, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Montag, R.; Dietz, W.; Nietzsche, S.; Lang, T.; Weich, K.; Sigusch, B.W.; Gaengler, P. Clinical and Micromorphologic 29-year Results of Posterior Composite Restorations. J. Dent. Res. 2018, 97, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Rousson, V. Clinical effectiveness of direct class II restorations—A meta-analysis. J. Adhes. Dent. 2012, 14, 407–431. [Google Scholar] [CrossRef]
- Opdam, N.J.; Bronkhorst, E.M.; Loomans, B.A.; Huysmans, M.C. 12-year survival of composite vs. amalgam restorations. J. Dent. Res. 2010, 89, 1063–1067. [Google Scholar] [CrossRef]
- Heintze, S.D.; Loguercio, A.D.; Hanzen, T.A.; Reis, A.; Rousson, V. Clinical efficacy of resin-based direct posterior restorations and glass-ionomer restorations—An updated meta-analysis of clinical outcome parameters. Dent. Mater. 2022, 38, e109–e135. [Google Scholar] [CrossRef]
- Peumans, M.; De Munck, J.; Mine, A.; Van Meerbeek, B. Clinical effectiveness of contemporary adhesives for the restoration of non-carious cervical lesions. A systematic review. Dent. Mater. 2014, 30, 1089–1103. [Google Scholar] [CrossRef] [PubMed]
- Mahn, E.; Rousson, V.; Heintze, S. Meta-Analysis of the Influence of Bonding Parameters on the Clinical Outcome of Tooth-colored Cervical Restorations. J. Adhes. Dent. 2015, 17, 391–403. [Google Scholar] [CrossRef]
- Peumans, M.; Kanumilli, P.; De Munck, J.; Van Landuyt, K.; Lambrechts, P.; Van Meerbeek, B. Clinical effectiveness of contemporary adhesives: A systematic review of current clinical trials. Dent. Mater. 2005, 21, 864–881. [Google Scholar] [CrossRef]
- Mjör, I.A. The location of clinically diagnosed secondary caries. Quintessence Int. 1998, 29, 313–317. [Google Scholar]
- Nedeljkovic, I.; De Munck, J.; Vanloy, A.; Declerck, D.; Lambrechts, P.; Peumans, M.; Teughels, W.; Van Meerbeek, B.; Van Landuyt, K.L. Secondary caries: Prevalence, characteristics, and approach. Clin. Oral Investig. 2020, 24, 683–691. [Google Scholar] [CrossRef]
- Eltahlah, D.; Lynch, C.D.; Chadwick, B.L.; Blum, I.R.; Wilson, N.H.F. An update on the reasons for placement and replacement of direct restorations. J. Dent. 2018, 72, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ge, K.X.; Quock, R.; Chu, C.H.; Yu, O.Y. The preventive effect of glass ionomer restorations on new caries formation: A systematic review and meta-analysis. J. Dent. 2022, 125, 104272. [Google Scholar] [CrossRef]
- Bayazıt, E.; Başeren, M.; Meral, E. Clinical comparison of different glass ionomer-based restoratives and a bulk-fill resin composite in Class I cavities: A 48-month randomized split-mouth controlled trial. J. Dent. 2023, 131, 104473. [Google Scholar] [CrossRef]
- Gurgan, S.; Kutuk, Z.B.; Yalcin Cakir, F.; Ergin, E. A randomized controlled 10 years follow up of a glass ionomer restorative material in class I and class II cavities. J. Dent. 2020, 94, 103175. [Google Scholar] [CrossRef] [PubMed]
- Cribari, L.; Madeira, L.; Roeder, R.B.R.; Macedo, R.M.; Wambier, L.M.; Porto, T.S.; Gonzaga, C.C.; Kaizer, M.R. High-viscosity glass-ionomer cement or composite resin for restorations in posterior permanent teeth? A systematic review and meta-analyses. J. Dent. 2023, 137, 104629. [Google Scholar] [CrossRef] [PubMed]
- Fotiadou, C.; Frasheri, I.; Reymus, M.; Diegritz, C.; Kessler, A.; Manhart, J.; Hickel, R.; Klinke, T.; Heck, K. A 3-year controlled randomized clinical study on the performance of two glass-ionomer cements in Class II cavities of permanent teeth. Quintessence Int. 2019, 50, 592–602. [Google Scholar] [CrossRef]
- Klinke, T.; Daboul, A.; Turek, A.; Frankenberger, R.; Hickel, R.; Biffar, R. Clinical performance during 48 months of two current glass ionomer restorative systems with coatings: A randomized clinical trial in the field. Trials 2016, 17, 239. [Google Scholar] [CrossRef]
- Amend, S.; Seremidi, K.; Kloukos, D.; Bekes, K.; Frankenberger, R.; Gizani, S.; Krämer, N. Clinical Effectiveness of Restorative Materials for the Restoration of Carious Primary Teeth: An Umbrella Review. J. Clin. Med. 2022, 11, 3490. [Google Scholar] [CrossRef]
- Dias, A.G.A.; Magno, M.B.; Delbem, A.C.B.; Cunha, R.F.; Maia, L.C.; Pessan, J.P. Clinical performance of glass ionomer cement and composite resin in Class II restorations in primary teeth: A systematic review and meta-analysis. J. Dent. 2018, 73, 1–13. [Google Scholar] [CrossRef]
- Frencken, J.E.; Leal, S.C.; Navarro, M.F. Twenty-five-year atraumatic restorative treatment (ART) approach: A comprehensive overview. Clin. Oral Investig. 2012, 16, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Molina, G.F.; Faulks, D.; Mulder, J.; Frencken, J.E. High-viscosity glass-ionomer vs. composite resin restorations in persons with disability: Five-year follow-up of clinical trial. Braz. Oral Res. 2019, 33, e099. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, I.M.; Brito, A.C.M.; de Sousa, S.A.; Santiago, B.M.; Cavalcanti, Y.W.; de Almeida, L.d.F.D. Glass ionomer cements compared with composite resin in restoration of noncarious cervical lesions: A systematic review and meta-analysis. Heliyon 2020, 6, e03969. [Google Scholar] [CrossRef] [PubMed]
- van Dijken, J.W.; Pallesen, U. Long-term dentin retention of etch-and-rinse and self-etch adhesives and a resin-modified glass ionomer cement in non-carious cervical lesions. Dent. Mater. 2008, 24, 915–922. [Google Scholar] [CrossRef]
- Heintze, S.D.; Rousson, V.; Hickel, R. Clinical effectiveness of direct anterior restorations--a meta-analysis. Dent. Mater. 2015, 31, 481–495. [Google Scholar] [CrossRef]
- Qvist, V.; Manscher, E.; Teglers, P. Resin-modified and conventional glass ionomer restorations in primary teeth: 8-year results. J. Dent. 2004, 32, 285–294. [Google Scholar] [CrossRef]
- Chadwick, B.; Evans, D. Restoration of class II cavities in primary molar teeth with conventional and resin modified glass ionomer cements: A systematic review of the literature. Eur. Arch. Paediatr. Dent. 2007, 8, 14–21. [Google Scholar] [CrossRef]
- Dermata, A.; Papageorgiou, S.; Fragkou, S.; Kotsanos, N. Comparison of resin modified glass ionomer cement and composite resin in class II primary molar restorations: A 2-year parallel randomised clinical trial. Eur. Arch. Paediatr. Dent. 2018, 19, 393–401. [Google Scholar] [CrossRef]
- van Dijken, J.W.V.; Pallesen, U.; Benetti, A. A randomized controlled evaluation of posterior resin restorations of an altered resin modified glass-ionomer cement with claimed bioactivity. Dent. Mater. 2019, 35, 335–343. [Google Scholar] [CrossRef]
- Lardani, L.; Derchi, G.; Marchio, V.; Carli, E. One-Year Clinical Performance of Activa™ Bioactive-Restorative Composite in Primary Molars. Children 2022, 9, 433. [Google Scholar] [CrossRef]
- Banon, R.; Vandenbulcke, J.; Van Acker, J.; Martens, L.; De Coster, P.; Rajasekharan, S. Two-year clinical and radiographic evaluation of ACTIVA BioACTIVE versus Compomer (Dyract® eXtra) in the restoration of class-2 cavities of primary molars: A non-inferior split-mouth randomised clinical trial. BMC Oral Health 2024, 24, 437. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Thunpithayakul, C.; Armstrong, S.R.; Rousson, V. Correlation between microtensile bond strength data and clinical outcome of Class V restorations. Dent. Mater. 2011, 27, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.W. Adhesion of glass-ionomer cements to teeth: A review. Int. J. Adhes. Adhes. 2016, 69, 33–38. [Google Scholar] [CrossRef]
- Yoshida, Y.; Van Meerbeek, B.; Nakayama, Y.; Snauwaert, J.; Hellemans, L.; Lambrechts, P.; Vanherle, G.; Wakasa, K. Evidence of chemical bonding at biomaterial-hard tissue interfaces. J. Dent. Res. 2000, 79, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Yip, H.K.; Tay, F.R.; Ngo, H.C.; Smales, R.J.; Pashley, D.H. Bonding of contemporary glass ionomer cements to dentin. Dent. Mater. 2001, 17, 456–470. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Yoshida, Y.; Inoue, S.; De Munck, J.; Van Landuyt, K.; Lambrechts, P. Glass-ionomer adhesion: The mechanisms at the interface. J. Dent. 2006, 34, 615–618. [Google Scholar]
- Tyas, M.; Burrow, M. Adhesive restorative materials: A review. Aust. Dent. J. 2004, 49, 112–121. [Google Scholar] [CrossRef]
- Ngo, H.; Mount, G.; Peters, M. A study of glass-ionorner cement and its interface with enamel and dentin using a low-temperature, high-resolution scanning electron microscopic technique. Quintessence Int. 1997, 28, 63–69. [Google Scholar]
- Sumikawa, D.A.; Marshall, G.W.; Gee, L.; Marshall, S.J. Microstructure of primary tooth dentin. Pediatr. Dent. 1999, 21, 439–444. [Google Scholar]
- Borges, A.F.S.; Bitar, R.A.; Kantovitz, K.R.; Correr, A.B.; Martin, A.A.; Puppin-Rontani, R.M. New perspectives about molecular arrangement of primary and permanent dentin. Appl. Surf. Sci. 2007, 254, 1498–1505. [Google Scholar] [CrossRef]
- Lenzi, T.L.; Guglielmi Cde, A.; Arana-Chavez, V.E.; Raggio, D.P. Tubule density and diameter in coronal dentin from primary and permanent human teeth. Microsc. Microanal. 2013, 19, 1445–1449. [Google Scholar] [CrossRef] [PubMed]
- Burrow, M.F.; Nopnakeepong, U.; Phrukkanon, S. A comparison of microtensile bond strengths of several dentin bonding systems to primary and permanent dentin. Dent. Mater. 2002, 18, 239–245. [Google Scholar] [CrossRef]
- Friedl, K.; Powers, J.; Hiller, K. Influence of different factors on bond strength of hybrid ionomers. Oper. Dent. 1995, 20, 74. [Google Scholar] [PubMed]
- Nör, J.E.; Feigal, R.J.; Dennison, J.B.; Edwards, C.A. Dentin bonding: SEM comparison of the resin-dentin interface in primary and permanent teeth. J. Dent. Res. 1996, 75, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Ohno, H.; Endo, K.; Kaga, M.; Sano, H.; Oguchi, H. The effect of hybrid layer thickness on bond strength: Demineralized dentin zone of the hybrid layer. Dent. Mater. 2000, 16, 406–411. [Google Scholar] [CrossRef]
- Sanabe, M.E.; Kantovitz, K.R.; Costa, C.A.; Hebling, J. Effect of acid etching time on the degradation of resin-dentin bonds in primary teeth. Am. J. Dent. 2009, 22, 37–42. [Google Scholar]
- Pires, C.W.; Soldera, E.B.; Bonzanini, L.I.L.; Lenzi, T.L.; Soares, F.Z.M.; Montagner, A.F.; Rocha, R.O. Is Adhesive Bond Strength Similar in Primary and Permanent Teeth? A Systematic Review and Meta-analysis. J. Adhes. Dent. 2018, 20, 87–97. [Google Scholar] [CrossRef]
- Marquezan, M.; Fagundes, T.C.; Toledano, M.; Navarro, M.F.; Osorio, R. Differential bonds degradation of two resin-modified glass-ionomer cements in primary and permanent teeth. J. Dent. 2009, 37, 857–864. [Google Scholar] [CrossRef]
- Walls, A.W.; McCabe, J.F.; Murray, J.J. Factors influencing the bond strength between glass polyalkenoate (ionomer) cements and dentine. J. Oral Rehabil. 1988, 15, 537–547. [Google Scholar] [CrossRef]
- Thean, H.P.; Mok, B.Y.; Chew, C.L. Bond strengths of glass ionomer restoratives to primary vs permanent dentin. ASDC J. Dent. Child. 2000, 67, 112–116+182. [Google Scholar]
- el-Kalla, I.H.; García-Godoy, F. Bond strength and interfacial micromorphology of compomers in primary and permanent teeth. Int. J. Paediatr. Dent. 1998, 8, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Raju, V.G.; Venumbaka, N.R.; Mungara, J.; Vijayakumar, P.; Rajendran, S.; Elangovan, A. Comparative evaluation of shear bond strength and microleakage of tricalcium silicate-based restorative material and radioopaque posterior glass ionomer restorative cement in primary and permanent teeth: An in vitro study. J. Indian. Soc. Pedod. Prev. Dent. 2014, 32, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, T.K. Bonding behavior of restorative materials in primary teeth submitted to erosive challenge − Evidence from an in vitro study. Int. J. Adhes. Adhes. 2018, 85, 130–137. [Google Scholar] [CrossRef]
- Pacifici, E.; Chazine, M.; Vichi, A.; Grandini, S.; Goracci, C.; Ferrari, M. Shear-bond strength of a new self-adhering flowable restorative material to dentin of primary molars. J. Clin. Pediatr. Dent. 2013, 38, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Marquezan, M.; Osorio, R.; Ciamponi, A.L.; Toledano, M. Resistance to degradation of bonded restorations to simulated caries-affected primary dentin. Am. J. Dent. 2010, 23, 47–52. [Google Scholar]
- Poorzandpoush, K.; Shahrabi, M.; Heidari, A.; Hosseinipour, Z.S. Shear Bond Strength of Self-Adhesive Flowable Composite, Conventional Flowable Composite and Resin-Modified Glass Ionomer Cement to Primary Dentin. Front. Dent. 2019, 16, 62–68. [Google Scholar] [CrossRef]
- Cehreli, Z.C.; Akca, T.; Altay, N. Bond strengths of polyacid-modified resin composites and a resin-modified glass-ionomer cement to primary dentin. Am. J. Dent. 2003, 16, 47a–50a. [Google Scholar]
- Rekha, C.V.; Varma, B.; Jayanthi. Comparative evaluation of tensile bond strength and microleakage of conventional glass ionomer cement, resin modified glass ionomer cement and compomer: An in vitro study. Contemp. Clin. Dent. 2012, 3, 282–287. [Google Scholar] [CrossRef]
- Kumar, R.K.; Subramani, S.K.; Swathika, B.; Ganesan, S.; Chikkanna, M.; Murugesan, S.; Babu, J.S.; Swarnalatha, C.; Nayyar, A.S. Comparison of shear bond strength of composite resin, compomer, and resin-modified glass-ionomer cements in primary teeth: An in-vitro study. J. Orthod. Sci. 2023, 12, 71. [Google Scholar] [CrossRef]
- Suwatviroj, P.; Messer, L.B.; Palamara, J.E. Microtensile bond strength of tooth-colored materials to primary tooth dentin. Pediatr. Dent. 2004, 26, 67–74. [Google Scholar]
- Keskin, G.; Gündoğar, Z.U.; Yaman, M.; Tek, G.B. Bond strength of Ion-releasing Restorative Materials to Sound and Caries-affected Dentin. J. Clin. Pediatr. Dent. 2021, 45, 29–34. [Google Scholar] [CrossRef] [PubMed]
- El Wakeel, A.M.; Elkassas, D.W.; Yousry, M.M. Bonding of contemporary glass ionomer cements to different tooth substrates; microshear bond strength and scanning electron microscope study. Eur. J. Dent. 2015, 9, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Oshida, Y.; Platt, J.A.; Cochran, M.A.; Matis, B.A.; Yi, K. Microtensile bond strength of glass ionomer cements to artificially created carious dentin. Oper. Dent. 2006, 31, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Burrow, M.F.; Bokas, J.; Tanumiharja, M.; Tyas, M.J. Microtensile bond strengths to caries-affected dentine treated with Carisolv. Aust. Dent. J. 2003, 48, 110–114. [Google Scholar] [CrossRef]
- Lin, A.; McIntyre, N.S.; Davidson, R.D. Studies on the adhesion of glass-ionomer cements to dentin. J. Dent. Res. 1992, 71, 1836–1841. [Google Scholar] [CrossRef]
- Somani, R.; Jaidka, S.; Singh, D.J.; Sibal, G.K. Comparative Evaluation of Shear Bond Strength of Various Glass Ionomer Cements to Dentin of Primary Teeth: An in vitro Study. Int. J. Clin. Pediatr. Dent. 2016, 9, 192–196. [Google Scholar] [CrossRef]
- Calvo, A.F.B.; Alves, F.B.T.; Lenzi, T.L.; Tedesco, T.K.; Reis, A.; Loguercio, A.D.; Raggio, D.P. Glass ionomer cements bond stability in caries-affected primary dentin. Int. J. Adhes. Adhes. 2014, 48, 183–187. [Google Scholar] [CrossRef]
- Alves, F.B.; Hesse, D.; Lenzi, T.L.; Guglielmi Cde, A.; Reis, A.; Loguercio, A.D.; Carvalho, T.S.; Raggio, D.P. The bonding of glass ionomer cements to caries-affected primary tooth dentin. Pediatr. Dent. 2013, 35, 320–324. [Google Scholar]
- Peric, T.; Markovic, E.; Markovic, D.; Petrovic, B. Meta-Analysis of In-Vitro Bonding of Glass-Ionomer Restorative Materials to Primary Teeth. Materials 2021, 14, 3915. [Google Scholar] [CrossRef]
- Bhatia, K.; Nayak, R.; Ginjupalli, K. Comparative evaluation of a bioactive restorative material with resin modified glass ionomer for calcium-ion release and shear bond strength to dentin of primary teeth-an in vitro study. J. Clin. Pediatr. Dent. 2022, 46, 25–32. [Google Scholar] [CrossRef]
- Nanavati, K.; Katge, F.; Chimata, V.K.; Pradhan, D.; Kamble, A.; Patil, D. Comparative Evaluation of Shear Bond Strength of Bioactive Restorative Material, Zirconia Reinforced Glass Ionomer Cement and Conventional Glass Ionomer Cement to the Dentinal Surface of Primary Molars: An in vitro Study. J. Dent. 2021, 22, 260–266. [Google Scholar] [CrossRef]
- Maravic, T.; Breschi, L.; Paganelli, F.; Bonetti, G.A.; Martina, S.; Di Giorgio, G.; Bossù, M.; Polimeni, A.; Checchi, V.; Generali, L.; et al. Endogenous Enzymatic Activity of Primary and Permanent Dentine. Materials 2021, 14, 4043. [Google Scholar] [CrossRef] [PubMed]
- Marshall, G.W., Jr.; Marshall, S.J.; Kinney, J.H.; Balooch, M. The dentin substrate: Structure and properties related to bonding. J. Dent. 1997, 25, 441–458. [Google Scholar] [CrossRef]
- Nakajima, M.; Kunawarote, S.; Prasansuttiporn, T.; Tagami, J. Bonding to caries-affected dentin. Jpn. Dent. Sci. Rev. 2011, 47, 102–114. [Google Scholar] [CrossRef]
- Schwendicke, F.; Frencken, J.E.; Bjørndal, L.; Maltz, M.; Manton, D.; Ricketts, D.; Van Landuyt, K.; Banerjee, A.; Campus, G.; Doméjean, S. Managing carious lesions: Consensus recommendations on carious tissue removal. Adv. Dent. Res. 2016, 28, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Pires, P.M.; Neves, A.d.A.; Makeeva, I.M.; Schwendicke, F.; Faus-Matoses, V.; Yoshihara, K.; Banerjee, A.; Sauro, S. Contemporary restorative ion-releasing materials: Current status, interfacial properties and operative approaches. Br. Dent. J. 2020, 229, 450–458. [Google Scholar] [CrossRef]
- de Almeida Neves, A.; Coutinho, E.; Cardoso, M.V.; Lambrechts, P.; Van Meerbeek, B. Current concepts and techniques for caries excavation and adhesion to residual dentin. J. Adhes. Dent. 2011, 13, 7–22. [Google Scholar] [CrossRef]
- Frencken, J.E. Atraumatic restorative treatment and minimal intervention dentistry. Br. Dent. J. 2017, 223, 183–189. [Google Scholar] [CrossRef]
- Spencer, P.; Wang, Y.; Katz, J.L.; Misra, A. Physicochemical interactions at the dentin/adhesive interface using FTIR chemical imaging. J. Biomed. Opt. 2005, 10, 031104. [Google Scholar] [CrossRef]
- Ito, S.; Saito, T.; Tay, F.R.; Carvalho, R.M.; Yoshiyama, M.; Pashley, D.H. Water content and apparent stiffness of non-caries versus caries-affected human dentin. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 72, 109–116. [Google Scholar] [CrossRef]
- Wang, Y.; Spencer, P.; Walker, M.P. Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J. Biomed. Mater. Res. Part A 2007, 81, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Yamashita, Y.; Ichijo, T.; Fusayama, T. The ultrastructure and hardness of the transparent of human carious dentin. J. Dent. Res. 1983, 62, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Marshall, G.; Habelitz, S.; Gallagher, R.; Balooch, M.; Balooch, G.; Marshall, S. Nanomechanical properties of hydrated carious human dentin. J. Dent. Res. 2001, 80, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, J. Dentin bonding—Variables related to the clinical situation and the substrate treatment. Dent. Mater. 2010, 26, e24–e37. [Google Scholar] [CrossRef]
- Daculsi, G.; LeGeros, R.; Jean, A.; Kerebel, B. Possible physico-chemical processes in human dentin caries. J. Dent. Res. 1987, 66, 1356–1359. [Google Scholar] [CrossRef]
- Schwendicke, F.; Eggers, K.; Meyer-Lueckel, H.; Dörfer, C.; Kovalev, A.; Gorb, S.; Paris, S. In vitro Induction of residual caries lesions in dentin: Comparative mineral loss and nano-hardness analysis. Caries Res. 2015, 49, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Ten Cate, J.; Duijsters, P. Alternating demineralization and remineralization of artificial enamel lesions. Caries Res. 1982, 16, 201–210. [Google Scholar] [CrossRef]
- Qi, Y.-P.; Li, N.; Niu, L.-N.; Primus, C.M.; Ling, J.-Q.; Pashley, D.H.; Tay, F.R. Remineralization of artificial dentinal caries lesions by biomimetically modified mineral trioxide aggregate. Acta Biomater. 2012, 8, 836–842. [Google Scholar] [CrossRef] [PubMed]
- TenCate, J.; Dundon, K.; Vernon, P.; Damato, F.; Huntington, E.; Exterkate, R.; Wefel, J.; Jordan, T.; Stephen, K.; Roberts, A. Preparation and measurement of artificial enamel lesions, a four-laboratory ring test. Caries Res. 1996, 30, 400–407. [Google Scholar] [CrossRef]
- Magalhães, A.C.; Moron, B.; Comar, L.P.; Wiegand, A.; Buchalla, W.; Buzalaf, M.A.R. Comparison of cross-sectional hardness and transverse microradiography of artificial carious enamel lesions induced by different demineralising solutions and gels. Caries Res. 2009, 43, 474–483. [Google Scholar] [CrossRef]
- Clarkson, B.; Wefel, J.; Miller, I. A model for producing caries-like lesions in enamel and dentin using oral bacteria in vitro. J. Dent. Res. 1984, 63, 1186–1189. [Google Scholar] [CrossRef] [PubMed]
- White, D. The application of in vitro models to research on demineralization and remineralization of the teeth. Adv. Dent. Res. 1995, 9, 175–193. [Google Scholar] [CrossRef] [PubMed]
- Marquezan, M.; Corrêa, F.N.; Sanabe, M.E.; Rodrigues Filho, L.E.; Hebling, J.; Guedes-Pinto, A.C.; Mendes, F.M. Artificial methods of dentine caries induction: A hardness and morphological comparative study. Arch. Oral Biol. 2009, 54, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Joves, G.J.; Inoue, G.; Nakashima, S.; Sadr, A.; Nikaido, T.; Tagami, J. Mineral density, morphology and bond strength of natural versus artificial caries-affected dentin. Dent. Mater. J. 2013, 32, 138–143. [Google Scholar] [CrossRef]
- Nakajima, M.; Kitasako, Y.; Okuda, M.; Foxton, R.M.; Tagami, J. Elemental distributions and microtensile bond strength of the adhesive interface to normal and caries-affected dentin. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 72, 268–275. [Google Scholar] [CrossRef]
- Nicoloso, G.F.; Antoniazzi, B.F.; Lenzi, T.L.; Soares, F.Z.M.; Rocha, R.d.O. The bonding performance of a universal adhesive to artificially-created caries-affected dentin. J. Adhes. Dent. 2017, 19, 317–321. [Google Scholar]
- Hass, V.; Cardenas, A.; Siqueira, F.; Pacheco, R.; Zago, P.; Silva, D.; Bandeca, M.; Loguercio, A. Bonding performance of universal adhesive systems applied in etch-and-rinse and self-etch strategies on natural dentin caries. Oper. Dent. 2019, 44, 510–520. [Google Scholar] [CrossRef]
- Erhardt, M.C.G.; Toledano, M.; Osorio, R.; Pimenta, L.A. Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces: Effects of long-term water exposure. Dent. Mater. 2008, 24, 786–798. [Google Scholar] [CrossRef]
- El-Deeb, H.A.; Mobarak, E.H. Microshear Bond Strength of High-viscosity Glass-ionomer to Normal and Caries-affected Dentin Under Simulated Intrapulpal Pressure. Oper. Dent. 2018, 43, 665–673. [Google Scholar] [CrossRef]
- Hamama, H.; Yiu, C.; Burrow, M.F. Effect of chemomechanical caries removal on bonding of resin-modified glass ionomer cement adhesives to caries-affected dentine. Aust. Dent. J. 2015, 60, 190–199. [Google Scholar] [CrossRef]
- Al-Taee, L.; Banerjee, A.; Deb, S. In-vitro adhesive and interfacial analysis of a phosphorylated resin polyalkenoate cement bonded to dental hard tissues. J. Dent. 2022, 118, 104050. [Google Scholar] [CrossRef] [PubMed]
- Aykut-Yetkiner, A.; Candan, U.; Ersin, N.; Eronat, C.; Belli, S.; Özcan, M. Effect of 2% chlorhexidine gluconate cavity disinfectant on microtensile bond strength of tooth-coloured restorative materials to sound and caries-affected dentin. J. Adhes. Sci. Technol. 2015, 29, 1169–1177. [Google Scholar] [CrossRef]
- Saad, A.; Inoue, G.; Nikaido, T.; Ikeda, M.; Burrow, M.F.; Tagami, J. Microtensile Bond Strength of Resin-Modified Glass Ionomer Cement to Sound and Artificial Caries-Affected Root Dentin With Different Conditioning. Oper. Dent. 2017, 42, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Ahangari, Z.; Khodadadi, E.; Ezoji, F.; Khafri, S. Comparative Evaluation of Microtensile Bond Strength of Three Restorative Materials. Biointerface Res. Appl. Chem 2020, 10, 6688–6694. [Google Scholar]
- Jiang, M.; Mei, M.L.; Wong, M.; Chu, C.H.; Lo, E. Influence of Silver Diamine Fluoride Treatment on the Microtensile Bond Strength of Glass Ionomer Cement to Sound and Carious Dentin. Oper. Dent. 2020, 45, E271–E279. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, T.L.; Bonifácio, C.C.; Bönecker, M.; Amerongen, W.; Nogueira, F.N.; Raggio, D.P. Flowable glass ionomer cement layer bonding to sound and carious primary dentin. J. Dent. Child. 2013, 80, 20–24. [Google Scholar]
- Khor, M.M.; Rosa, V.; Sim, C.J.; Hong, C.H.L.; Hu, S. SMART: Silver diamine fluoride reduces microtensile bond strength of glass ionomer cement to sound and artificial caries-affected dentin. Dent. Mater. J. 2022, 41, 698–704. [Google Scholar] [CrossRef]
- Al-Hasan, R.M.; Al-Taee, L.A. Interfacial Bond Strength and Morphology of Sound and Caries-affected Dentin Surfaces Bonded to Two Resin-modified Glass Ionomer Cements. Oper. Dent. 2022, 47, E188–E196. [Google Scholar] [CrossRef]
- Ng, E.; Saini, S.; Schulze, K.A.; Horst, J.; Le, T.; Habelitz, S. Shear Bond Strength of Glass Ionomer Cement to Silver Diamine Fluoride-Treated Artificial Dentinal Caries. Pediatr. Dent. 2020, 42, 221–225. [Google Scholar]
- Agob, J.N.; Aref, N.S.; Al-Wakeel, E.E.S. Effect of casein phosphopeptide-amorphous calcium phosphate on fluoride release and micro-shear bond strength of resin-modified glass ionomer cement in caries-affected dentin. Restor. Dent. Endod. 2018, 43, e45. [Google Scholar] [CrossRef]
- Kucukyilmaz, E.; Savas, S.; Kavrik, F.; Yasa, B.; Botsali, M. Fluoride release/recharging ability and bond strength of glass ionomer cements to sound and caries-affected dentin. Niger. J. Clin. Pract. 2017, 20, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.B.; Lenzi, T.L.; Tedesco, T.K.; Guglielmi, C.d.A.B.; Raggio, D.P. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials. Braz. Oral Res. 2012, 26, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, B.; Deregowska-Nosowicz, P.; Limanowska-Shaw, H.; Nicholson, J.W. Shear bond strengths of glass-ionomer cements to sound and to prepared carious dentine. J. Mater. Sci. Mater. Med. 2007, 18, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Palma-Dibb, R.G.; de Castro, C.G.; Ramos, R.P.; Chimello, D.T.; Chinelatti, M.A. Bond strength of glass-ionomer cements to caries-affected dentin. J. Adhes. Dent. 2003, 5, 57–62. [Google Scholar]
- Zhao, I.S.; Mei, M.L.; Zhou, Z.L.; Burrow, M.F.; Lo, E.C.; Chu, C.H. Shear Bond Strength and Remineralisation Effect of a Casein Phosphopeptide-Amorphous Calcium Phosphate-Modified Glass Ionomer Cement on Artificial “Caries-Affected” Dentine. Int. J. Mol. Sci. 2017, 18, 1723. [Google Scholar] [CrossRef]
- Cascales, Á.F.; Moscardó, A.P.; Toledano, M.; Banerjee, A.; Sauro, S. An in-vitro investigation of the bond strength of experimental ion-releasing dental adhesives to caries-affected dentine after 1 year of water storage. J. Dent. 2022, 119, 104075. [Google Scholar] [CrossRef]
- Ngo, H.C.; Mount, G.; Mc Intyre, J.; Tuisuva, J.; Von Doussa, R. Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: An in vivo study. J. Dent. 2006, 34, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Yiu, C.K.; Kim, J.R.; Gu, L.; Kim, S.K.; Weller, R.N.; Pashley, D.H.; Tay, F.R. Failure of a glass ionomer to remineralize apatite-depleted dentin. J. Dent. Res. 2010, 89, 230–235. [Google Scholar] [CrossRef]
- Chisini, L.A.; Collares, K.; Cademartori, M.G.; de Oliveira, L.J.C.; Conde, M.C.M.; Demarco, F.F.; Correa, M.B. Restorations in primary teeth: A systematic review on survival and reasons for failures. Int. J. Paediatr. Dent. 2018, 28, 123–139. [Google Scholar] [CrossRef]
- Marshall, S.J.; Bayne, S.C.; Baier, R.; Tomsia, A.P.; Marshall, G.W. A review of adhesion science. Dent. Mater. 2010, 26, e11–e16. [Google Scholar] [CrossRef]
- Eiriksson, S.O.; Pereira, P.N.; Swift, E.J., Jr.; Heymann, H.O.; Sigurdsson, A. Effects of saliva contamination on resin-resin bond strength. Dent. Mater. 2004, 20, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.; Hickel, R.; Ilie, N. Adverse effects of salivary contamination for adhesives in restorative dentistry. A literature review. Am. J. Dent. 2017, 30, 156–164. [Google Scholar] [PubMed]
- Pashley, D.H.; Nelson, R.; Kepler, E.E. The effects of plasma and salivary constituents on dentin permeability. J. Dent. Res. 1982, 61, 978–981. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.B.D.; Santos, P.H.D.; Esteves, L.M.B.; Silva, L.M.A.V.D.; Gallinari, M.D.O.; Fagundes, T.C.; Antonnaccio, G.B.D.M.; Briso, A.L.F. Effect of dentin contamination and cleaning on the bond strength of resin-modified glass ionomer cement. Res. Soc. Dev. 2021, 10, e53310615983. [Google Scholar] [CrossRef]
- Shimazu, K.; Karibe, H.; Ogata, K. Effect of artificial saliva contamination on adhesion of dental restorative materials. Dent. Mater. J. 2014, 33, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, K.; Karibe, H.; Oguchi, R.; Ogata, K. Influence of artificial saliva contamination on adhesion in class V restorations. Dent. Mater. J. 2020, 39, 429–434. [Google Scholar] [CrossRef]
- Dursun, E.; Attal, J.P. Combination of a self-etching adhesive and a resin-modified glass ionomer: Effect of water and saliva contamination on bond strength to dentin. J. Adhes. Dent. 2011, 13, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Kulczyk, K.E.; Sidhu, S.K.; McCabe, J.F. Salivary contamination and bond strength of glass-ionomers to dentin. Oper. Dent. 2005, 30, 676–683. [Google Scholar]
- Safar, J.A.; Davis, R.D.; Overton, J.D. Effect of saliva contamination on the bond of dentin to resin-modified glass-ionomer cement. Oper. Dent. 1999, 24, 351–357. [Google Scholar]
- Aboush, Y.E.; Jenkins, C.B. The effect of poly(acrylic acid) cleanser on the adhesion of a glass polyalkenoate cement to enamel and dentine. J. Dent. 1987, 15, 147–152. [Google Scholar] [CrossRef]
- Saad, A.; Inoue, G.; Nikaido, T.; Abdou, A.M.A.; Sayed, M.; Burrow, M.F.; Tagami, J. Effect of dentin contamination with two hemostatic agents on bond strength of resin-modified glass ionomer cement with different conditioning. Dent. Mater. J. 2019, 38, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Wangpermtam, P.; Botelho, M.G.; Dyson, J.E. Effect of contamination and decontamination on adhesion of a resin-modified glass-ionomer cement to bovine dentin. J. Adhes. Dent. 2011, 13, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Eiriksson, S.O.; Pereira, P.N.; Swift, E.J.; Heymann, H.O.; Sigurdsson, A. Effects of blood contamination on resin-resin bond strength. Dent. Mater. 2004, 20, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Pratabsingha, J.; Noppawong, S.; Thamsoonthorn, C.; Vichathai, W.; Saikaew, P. Bonding Protocols to Reverse the Bond Strength of a Universal Adhesive to Hemostatic Agent-contaminated Dentin. Oper. Dent. 2023, 48, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, Y.; Karayılmaz, H.; Ünal, M.; Güngör, Ö.; Ciftci, Z. Effects of blood contamination and hemostatic agents on bond strength in primary teeth dentin. Niger. J. Clin. Pract. 2020, 23, 1103–1109. [Google Scholar] [CrossRef]
- Powis, D.R.; Follerås, T.; Merson, S.A.; Wilson, A.D. Improved adhesion of a glass ionomer cement to dentin and enamel. J. Dent. Res. 1982, 61, 1416–1422. [Google Scholar] [CrossRef]
- Yap, A.; Tan, A.; Goh, A.; Goh, D.; Chin, K. Effect of surface treatment and cement maturation on the bond strength of resin-modified glass ionomers to dentin. Oper. Dent. 2003, 28, 728–733. [Google Scholar] [PubMed]
- Tay, F.R.; Smales, R.J.; Ngo, H.; Wei, S.H.; Pashley, D.H. Effect of different conditioning protocols on adhesion of a GIC to dentin. J. Adhes. Dent. 2001, 3, 153–167. [Google Scholar]
- Cardoso, M.V.; Delmé, K.I.; Mine, A.; Neves Ade, A.; Coutinho, E.; De Moor, R.J.; Van Meerbeek, B. Towards a better understanding of the adhesion mechanism of resin-modified glass-ionomers by bonding to differently prepared dentin. J. Dent. 2010, 38, 921–929. [Google Scholar] [CrossRef]
- Avila, W.M.; Hesse, D.; Bonifacio, C.C. Surface Conditioning Prior to the Application of Glass-Ionomer Cement: A Systematic Review and Meta-analysis. J. Adhes. Dent. 2019, 21, 391–399. [Google Scholar] [CrossRef]
- Hoshika, S.; De Munck, J.; Sano, H.; Sidhu, S.K.; Van Meerbeek, B. Effect of Conditioning and Aging on the Bond Strength and Interfacial Morphology of Glass-ionomer Cement Bonded to Dentin. J. Adhes. Dent. 2015, 17, 141–146. [Google Scholar] [CrossRef]
- Hoshika, S.; Ting, S.; Ahmed, Z.; Chen, F.; Toida, Y.; Sakaguchi, N.; Van Meerbeek, B.; Sano, H.; Sidhu, S.K. Effect of conditioning and 1 year aging on the bond strength and interfacial morphology of glass-ionomer cement bonded to dentin. Dent. Mater. 2021, 37, 106–112. [Google Scholar] [CrossRef]
- Zubaer, A.; Akter, R.S.; Ayubur, R.M.; Hidehiko, S.; Shuhei, H. Effect of conditioning and 3-year aging on the bond strength and interfacial morphology of glass-ionomer cement bonded to dentin. J. Dent. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Hoshika, S.; Koshiro, K.; Inoue, S.; Tanaka, T.; Sano, H.; Sidhu, S.K. Interfacial Characterization of a Conventional Glass-Ionomer Cement after Functioning for 1-year In Vivo. J. Adhes. Dent. 2022, 24, 203–208. [Google Scholar] [CrossRef]
- Poggio, C.; Beltrami, R.; Scribante, A.; Colombo, M.; Lombardini, M. Effects of dentin surface treatments on shear bond strength of glass-ionomer cements. Ann. Stomatol. 2014, 5, 15. [Google Scholar] [CrossRef]
- Rai, N.; Naik, R.; Gupta, R.; Shetty, S.; Singh, A. Evaluating the effect of different conditioning agents on the shear bond strength of resin-modified glass ionomers. Contemp. Clin. Dent. 2017, 8, 604–612. [Google Scholar] [CrossRef]
- El-Askary, F.S.; Nassif, M.S. The effect of the pre-conditioning step on the shear bond strength of nano-filled resin-modified glass-ionomer to dentin. Eur. J. Dent. 2011, 5, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Sauro, S.; Watson, T.; Moscardó, A.P.; Luzi, A.; Feitosa, V.P.; Banerjee, A. The effect of dentine pre-treatment using bioglass and/or polyacrylic acid on the interfacial characteristics of resin-modified glass ionomer cements. J. Dent. 2018, 73, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, Y.; Ozel, E.; Attar, N.; Ozge Bicer, C. Influence of different conditioning methods on the shear bond strength of novel light-curing nano-ionomer restorative to enamel and dentin. Lasers Med. Sci. 2010, 25, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Alkhudhairy, F. Dentin conditioning using different laser prototypes (Er, Cr: YSGG.; Er: YAG) on bond assessment of resin-modified glass ionomer cement. J. Contemp. Dent. Pract 2020, 21, 426–430. [Google Scholar] [CrossRef]
- Aljdaimi, A.; Devlin, H.; Dickinson, M. Effect of the Er: YAG laser on the shear bond strength of conventional glass ionomer and Biodentine™ to dentine. Eur. J. Dent. 2018, 12, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Altunsoy, M.; Botsali, M.S.; Korkut, E.; Kucukyilmaz, E.; Sener, Y. Effect of different surface treatments on the shear and microtensile bond strength of resin-modified glass ionomer cement to dentin. Acta Odontol. Scand. 2014, 72, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Al-Khureif, A.A.; Mohamed, B.A.; Al-Shehri, A.M.; Khan, A.A.; Divakar, D.D. Bond assessment of resin modified glass ionomer cement to dentin conditioned with photosensitizers, laser and conventional regimes. Photodiagnosis Photodyn. Ther. 2020, 30, 101795. [Google Scholar] [CrossRef] [PubMed]
- Alkhudhairy, F.; Naseem, M.; Ahmad, Z.H.; Alnooh, A.N.; Vohra, F. Influence of photobio-modulation with an Er,Cr:YSGG laser on dentin adhesion bonded with bioactive and resin-modified glass ionomer cement. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019880691. [Google Scholar] [CrossRef] [PubMed]
- Alkhudhairy, F.; Vohra, F.; Naseem, M.; Ahmad, Z.H. Adhesive bond integrity of dentin conditioned by photobiomodulation and bonded to bioactive restorative material. Photodiagnosis Photodyn. Ther. 2019, 28, 110–113. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.; Yiu, C.; Hashimoto, M.; Breschi, L.; Carvalho, R.M.d.; Ito, S. Collagen degradation by host-derived enzymes during aging. J. Dent. Res. 2004, 83, 216–221. [Google Scholar] [CrossRef]
- Ersin, N.K.; Candan, U.; Aykut, A.; Eronat, C.; Belli, S. No adverse effect to bonding following caries disinfection with chlorhexidine. J. Dent. Child. 2009, 76, 20–27. [Google Scholar]
- Abuljadayel, R.; Aljadani, N.; Almutairi, H.; Turkistani, A. Effect of Antibacterial Agents on Dentin Bond Strength of Bioactive Restorative Materials. Polymers 2023, 15, 2612. [Google Scholar] [CrossRef]
- Dursun, E.; Le Goff, S.; Ruse, D.; Attal, J. Effect of chlorhexidine application on the long-term shear bond strength to dentin of a resin-modified glass ionomer. Oper. Dent. 2013, 38, 275–281. [Google Scholar] [CrossRef]
- Fagundes, T.C.; Toledano, M.; Navarro, M.F.L.; Osorio, R. Resistance to degradation of resin-modified glass-ionomer cements dentine bonds. J. Dent. 2009, 37, 342–347. [Google Scholar] [CrossRef]
- Imbery, T.; Namboodiri, A.; Duncan, A.; Amos, R.; Best, A.; Moon, P. Evaluating dentin surface treatments for resin-modified glass ionomer restorative materials. Oper. Dent. 2013, 38, 429–438. [Google Scholar] [CrossRef] [PubMed]
- François, P.; Remadi, A.; Le Goff, S.; Abdel-Gawad, S.; Attal, J.-P.; Dursun, E. Flexural properties and dentin adhesion in recently developed self-adhesive bulk-fill materials. J. Oral Sci. 2021, 63, 139–144. [Google Scholar] [CrossRef]
- Rifai, H.; Qasim, S.; Mahdi, S.; Lambert, M.-J.; Zarazir, R.; Amenta, F.; Naim, S.; Mehanna, C. In-vitro evaluation of the shear bond strength and fluoride release of a new bioactive dental composite material. J. Clin. Exp. Dent. 2022, 14, e55. [Google Scholar] [CrossRef]
- Mazzaoui, S.A.; Burrow, M.F.; Tyas, M.J. Fluoride release from glass ionomer cements and resin composites coated with a dentin adhesive. Dent. Mater. 2000, 16, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Miranda, L.A.; Weidlich, P.; Samuel, S.M.W.; Maltz, M. Fluoride release from restorative materials coated with an adhesive. Braz. Dent. J. 2002, 13, 39–43. [Google Scholar]
- Salz, U.; Bock, T. Testing adhesion of direct restoratives to dental hard tissue—A review. J. Adhes. Dent. 2010, 12, 343–371. [Google Scholar] [CrossRef]
- Pashley, D.H.; Sano, H.; Ciucchi, B.; Yoshiyama, M.; Carvalho, R.M. Adhesion testing of dentin bonding agents: A review. Dent. Mater. 1995, 11, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, S.S.; Cesar, P.F.; Swain, M.V. Direct comparison of the bond strength results of the different test methods: A critical literature review. Dent. Mater. 2010, 26, e78–e93. [Google Scholar] [CrossRef]
- Mine, A.; De Munck, J.; Cardoso, M.V.; Van Landuyt, K.L.; Poitevin, A.; Van Ende, A.; Matsumoto, M.; Yoshida, Y.; Kuboki, T.; Yatani, H. Dentin-smear remains at self-etch adhesive interface. Dent. Mater. 2014, 30, 1147–1153. [Google Scholar] [CrossRef]
- Ogata, M.; Harada, N.; Yamaguchi, S.; Nakajima, M.; Pereira, P.; Tagami, J. Effects of different burs on dentin bond strengths of self-etching primer bonding systems. Oper. Dent. 2001, 26, 375–382. [Google Scholar]
- de los Angeles Moyaho-Bernal, M.; Badillo-Estévez, B.E.; Soberanes-de la Fuente, E.L.; González-Torres, M.; Teutle-Coyotecatl, B.; de Celís-Quintana, G.N.R.; Carrasco-Gutiérrez, R.; Vaillard-Jiménez, E.; Lezama-Flores, G. The roughness of deciduous dentin surface and shear bond strength of glass ionomers in the treatment with four minimally invasive techniques. RSC Adv. 2019, 9, 32197–32204. [Google Scholar] [CrossRef] [PubMed]
- Di Nicoló, R.; Shintome, L.K.; Myaki, S.I.; Nagayassu, M.P. Bond strength of resin modified glass ionomer cement to primary dentin after cutting with different bur types and dentin conditioning. J. Appl. Oral Sci. 2007, 15, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Burke, F.; Lynch, E. Glass polyalkenoate bond strength to dentine after chemomechanical caries removal. J. Dent. 1994, 22, 283–291. [Google Scholar] [CrossRef] [PubMed]
- McInnes-Ledoux, P.; Weinberg, R.; Grogono, A. Bonding glass-ionomer cements to chemomechanically-prepared dentin. Dent. Mater. 1989, 5, 189–193. [Google Scholar] [CrossRef]
- Chittem, J.; Sajjan, G.S.; Varma, K.M. Comparative evaluation of microshear bond strength of the caries-affected dentinal surface treated with conventional method and chemomechanical method (papain). J. Conserv. Dent. Endod. 2015, 18, 369–373. [Google Scholar] [CrossRef]
- Nair, M.; Rao, A.; Kukkila, J.; Natarajan, S.; Srikrishna, S.B. A comparative evaluation of micro shear bond strength and microleakage between the resin-modified glass ionomer cement and residual dentin following excavation of carious dentin using Carie CareTM and conventional caries removal in primary teeth: An in vitro study. F1000Research 2023, 12, 332. [Google Scholar]
- Souza-Gabriel, A.; Amaral, F.; Pécora, J.D.; Palma-Dibb, R.G.; Corona, S.A.M. Shear bond strength of resin-modified glass ionomer cements to Er: YAG laser-treated tooth structure. Oper. Dent. 2006, 31, 212–218. [Google Scholar] [CrossRef]
- Colucci, V.; de Araújo Loiola, A.B.; da Motta, D.S.; do Amaral, F.L.; Pécora, J.D.; Corona, S.A. Influence of long-term water storage and thermocycling on shear bond strength of glass-ionomer cement to Er:YAG laser-prepared dentin. J. Adhes. Dent. 2014, 16, 35–39. [Google Scholar] [CrossRef]
- Ekworapoj, P.; Sidhu, S.K.; McCabe, J.F. Effect of surface conditioning on adhesion of glass ionomer cement to Er,Cr:YSGG laser-irradiated human dentin. Photomed. Laser Surg. 2007, 25, 118–123. [Google Scholar] [CrossRef]
- Itoh, K.; Yanagawa, T.; Wakumoto, S. Effect of composition and curing type of composite on adaptation to dentin cavity wall. Dent. Mater. J. 1986, 5, 260–266. [Google Scholar] [CrossRef]
- Yao, C.; Ahmed, M.H.; Zhang, F.; Mercelis, B.; Van Landuyt, K.L.; Huang, C.; Van Meerbeek, B. Structural/Chemical Characterization and Bond Strength of a New Self-Adhesive Bulk-fill Restorative. J. Adhes. Dent. 2020, 22, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Ahmed, M.H.; Okazaki, Y.; Van Landuyt, K.L.; Huang, C.; Van Meerbeek, B. Bonding Efficacy of a New Self-Adhesive Restorative onto Flat Dentin vs Class-I Cavity-bottom Dentin. J. Adhes. Dent. 2020, 22, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Sano, H.; Shono, T.; Sonoda, H.; Takatsu, T.; Ciucchi, B.; Carvalho, R.; Pashley, D.H. Relationship between surface area for adhesion and tensile bond strength—Evaluation of a micro-tensile bond test. Dent. Mater. 1994, 10, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N. ISO 4049 versus NIST 4877: Influence of stress configuration on the outcome of a three-point bending test in resin-based dental materials and interrelation between standards. J. Dent. 2021, 110, 103682. [Google Scholar] [CrossRef]
- Sidhu, S.; Sherriff, M.; Watson, T. Failure of resin-modified glass-ionomers subjected to shear loading. J. Dent. 1999, 27, 373–381. [Google Scholar] [CrossRef]
- Pereira, L.C.; Nunes, M.C.; Dibb, R.G.; Powers, J.M.; Roulet, J.F.; Navarro, M.F. Mechanical properties and bond strength of glass-ionomer cements. J. Adhes. Dent. 2002, 4, 73–80. [Google Scholar]
- Mount, G.J. Adhesion of glass-ionomer cement in the clinical environment. Oper. Dent. 1991, 16, 141–148. [Google Scholar]
- Chen, C.N.; Huang, G.F.; Guo, M.K.; Lin, C.P. An in vitro study on restoring bond strength of a GIC to saliva contaminated enamel under unrinse condition. J. Dent. 2002, 30, 189–194. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, e100–e121. [Google Scholar] [CrossRef]
NCAD |
| |||
ACAD | Chemical | pH cycling |
|
|
Static |
| |||
Microbiological |
|
First Author, Year | Tooth Type | Substrate | Test Method | Storage | Material | Significance | |
Khor, 2022 [137] | permanent | ACAD (pH cycling) | μTBS | 48 h | GIC (Fuji IX GP Extra) | SD > CAD | |
Al-Hasan, 2022 [138] | permanent | NCAD | SBS | 24 h or 2 months | RMGIC (Fuji II LC) RMGIC (Activa— without adhesive) | 24 h: SD > CAD SD = CAD | 2 m: CAD > SD SD = CAD |
Al-Taee, 2022 [131] | permanent | NCAD | SBS | 24 h or 3 months | GIC (Fuji IX GP) RMGIC (Fuji II LC) RMGIC (experimental) RBC (Filtek Supreme + Scothbond Universal) | 24 h: SD < CAD SD < CAD SD < CAD SD < CAD | 3 m: SD = CAD SD = CAD SD > CAD SD > CAD |
Keskin, 2021 [91] | permanent | ACAD (pH cycling) | μTBS | 24 h + 10,000 TC | GIC (Fuji IX Extra) GIC (Equia Forte) RMGIC (Fuji II LC) RMGIC (Activa) Giomer (Beautifill II LS) | SD > CAD SD = CAD SD > CAD SD > CAD SD = CAD | |
Jiang, 2020 [135] | permanent | ACAD (microbiological) | μTBS | 7 days | GIC (Ketac Molar) | SD > CAD | |
Ng, 2020 [139] | permanent | ACAD (static) | SBS | 24 h | GIC (Fuji IX) | SD = CAD | |
Ahangari, 2020 [134] | permanent | ACAD (static) | μTBS | N/A | GIC (Equia Forte) GIC (Ketac Molar) RMGIC (capsulated Fuji II LC) RMGIC (hand-mixed Fuji II LC) Flowable RBC (Filtek Z350) | SD > CAD SD > CAD SD > CAD SD > CAD SD > CAD | |
Tedesco, 2018 [83] | deciduous | Erosion | μSBS | 24 h or 12 months | GIC (Fuji IX) RMGIC (Vitremer) RBC (Filtek Z250 + Adper Single Bond 2) | 24 h: SD = eroded SD > eroded SD > eroded | 12 m: SD = eroded SD > eroded SD > eroded |
El-Deeb, 2018 [129] | permanent | NCAD | μSBS | 24 h | GIC (GC Fuji IX GP Fast) GIC (Fuji IX GP containing CHX) GIC (ChemFil Rock) | SD = CAD SD = CAD SD = CAD | |
Agob, 2018 [140] | permanent | ACAD (static) | μSBS | 24 h | RMGIC (Fuji II LC) | SD > CAD | |
Saad, 2017 [133] | permanent | ACAD (static) | μTBS | 24 h or 3 months | RMGIC (Fuji II LC)
| 24 h: SD > CAD SD > CAD | 3 m: SD = CAD SD > CAD |
Kucukyilmaz, 2017 [141] | deciduous | ACAD (pH cycling) | μTBS | 24 h | GIC (Equia) GIC (GCP Glass Fill) RMGIC (Ketac N100) | SD > CAD SD = CAD SD > CAD | |
Hamama, 2015 [130] | permanent | NCAD (prepared with rotary instruments) | μTBS | 24 h | RMGIC (Riva LC RMGIC + Riva Bond LC) RMGIC (Fuji II LC + Fuji Bond LC) | SD = CAD SD = CAD | |
Aykut-Yetkiner, 2015 [132] | permanent | NCAD | μTBS | 24 h | GIC (Ketac Molar) RMGIC (Vitremer) Bioactive restorative material (Surefil (with adhesive)) | SD = CAD SD = CAD SD = CAD | |
Calvo, 2014 [97] | deciduous | ACAD (pH cycling) | μTBS | 24 h or 2 years | GIC (Ketac Molar Easy Mix) RMGIC (Vitremer) RMGIC (Ketac Nano) | 24 h: SD = CAD SD = CAD SD = CAD | 2 y: SD = CAD SD = CAD SD = CAD |
Alves, 2013 [98] | deciduous | ACAD (pH cycling) | μTBS | 24 h | GIC (Ketac Molar Easy Mix) RMGIC (Ketac N100) RMGIC (Vitremer) | SD = CAD SD = CAD SD = CAD | |
Lenzi, 2013 [136] | deciduous | ACAD (pH cycling) | μTBS | 24 h | GIC (Fuji IX)
| SD = CAD SD > CAD | |
Cruz, 2012 [142] | permanent | Erosion | μSBS | 24 h | GIC (Ketac Molar Easy Mix) RMGIC (Vitremer) RBC (Adper Single Bond 2 + Filtek Z250) | SD = eroded SD = eroded SD = eroded | |
Marquezan, 2010 [85] | deciduous | ACAD (pH cycling) | μTBS | 24 h or load cycling or pH cycling | RMGIC (Vitremer) RBC (Adper Single Bond 2 + Filtek Z100) | All storage times: SD = CAD SD > CAD | |
Czarnecka, 2007 [143] | permanent | NCAD (sclerotic dentin) | SBS | 24 h | GIC (Fuji IX GP) GIC (Fuji IX capsulated) GIC (Fuji IX Fast capsulated) GIC (Ketac Molar) GIC (Ketac Molar Aplicap) | SD > CAD SD = CAD SD = CAD SD > CAD SD = CAD | |
Choi, 2006 [93] | permanent | ACAD (static) | μTBS | 24 h | GIC (Ketac-Fil Plus Aplicap) RMGIC (Photac-Fil Aplicap) | SD > CAD SD > CAD | |
Cehreli, 2003 [87] | deciduous | ACAD (static) | μTBS | 18 months | RMGIC (Vitremer) PMRC (Dyract AP) PMRC (Compoglass F) PMRC (F2000) | SD > CAD SD > CAD SD > CAD SD > CAD | |
Burrow, 2003 [94] | permanent | NCAD (prepared with chemomechanical caries removal) | μTBS | 24 h | GIC (Fuji IX) RMGIC (Fuji II LC) RBC (Clearfil SE Bond + RBC) RBC (One Coat Bond + RBC) | SD = CAD SD > CAD SD = CAD SD = CAD |
First Author, Year | Material | Contamination Protocol | Storage | Test Method | Main Findings |
Almeida, 2021 [154] | RMGIC (Riva Light Cure) | Contaminant: Saliva, blood, hemostatic agent Actively applied by brush for 2 min For decontamination, rinsing and drying for 20 s or reconditioning with PAA for 10 s. | 7 days or 10,000 TC | μTBS | Contaminants impaired the bond strength. Reconditioning was effective for decontaminating saliva and hemostatic agent, but not for blood. |
Shimazu, 2020 [156] | RBC (Clearfil AP-X + OptiBond Solo Plus) RBC (Clearfil AP-X +Scotchbond Universal) RMGIC (Fuji II LC) GIC (Fuji IX extra) | Contaminant: Artificial saliva Mild—0.1 mL of saliva was placed and dried slightly Severe—0.1 mL of the saliva was used as is. | 24 h | μTBS | No effect on GIC and RMGIC, reduced bond strength of RBC. |
Saad, 2019 [161] | RBC (Clearfil AP-X + Clearfil SE Bond) RMGIC (Fuji II LC) | Contaminant: Hemostatic agents applied for 5 min, rinsed with water for 20 s. Application of different conditioners: RBC—Clearfil SE bond RMGIC—Cavity Conditioner, Self Conditioner or Clearfil SE Primer | 24 h | μTBS | No effect of contaminant on RMGIC. |
Shimazu, 2014 [155] | RBC (Clearfil AP-X + OptiBond Solo Plus) RBC (Clearfil AP-X + Clearfil S3) RMGIC (Fuji II LC) GIC (Fuji IX ekstra) | Contaminant: Artificial saliva Mild—0.1 mL of saliva was placed and dried slightly Severe—0.1 mL of the saliva was used as is. | 24 h | SBS | No effect on GIC and RMGIC, reduced bond strength of RBC. |
Dursun, 2011 [157] | RMGIC (Fuji II LC + i Bond) | Contaminant: Water, saliva Water or saliva was applied with brush before or after adhesive application and air-thinned, leaving the specimen visibly moist. | 24 h | SBS | No effect. |
Wangpermtam, 2011 [162] | RMGIC (Fuji II LC) | Contaminant: Provisional cement, handpiece lubricant Provisional cement applied with hand instrument, removed 3 min after setting with the same instrument, or two drops of lubricant covering the surface, wiped off with sponge. For decontamination, Hibiscrub, CHX or pumice were used. A drop of Hibiscrub or CHX applied with a brush for 1 min, washed and conditioned with 10% PAA. Pumice paste was rubbed with brush for 1 min, conditioned with 10% PAA. | 24 h | μTBS | Provisional cement and handpiece lubricant reduced the bond strength. Hibiscrub was more effective for decontaminating the lubricant. |
Kulczyk, 2005 [158] | GIC (Fuji IX GP) GIC (Ketac Molar) | Contaminant: Saliva An amount of 0.05 mL of saliva was applied for 20 s. For decontamination, surface was washed with water for 5 s and gently air-dried. | 7 days | SBS | No effect. |
Safar, 1999 [159] | RMGIC (Fuji II LC) | Contaminant: Saliva Saliva was applied on surface for 10 s and thinned with air until only a thin, wet film remained. For decontamination, it was either dried, rinsed or reconditioned. | 7 days | SBS | Saliva contamination reduced the bond strength. Decontamination methods failed to recover it. |
Aboush, 1987 [160] | GIC (ChemFil II) | Contaminant: Saliva Immersed in saliva for 1 min or 10 days, then washed for 20 s with water and air-dried. For decontamination, 25% PAA for 30 s, 50% citric acid solution for 30 s or pumice applied for 10 s using a rubber cup. All specimens were then rinsed off and air-dried. | 24 h | TBS | Saliva contamination was detrimental to bond strength. PAA, citric acid and pumice were similarly effective for decontamination. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batu Eken, Z.; Ilie, N. A Critical Review on the Factors Affecting the Bond Strength of Direct Restorative Material Alternatives to Amalgam. Materials 2024, 17, 4853. https://doi.org/10.3390/ma17194853
Batu Eken Z, Ilie N. A Critical Review on the Factors Affecting the Bond Strength of Direct Restorative Material Alternatives to Amalgam. Materials. 2024; 17(19):4853. https://doi.org/10.3390/ma17194853
Chicago/Turabian StyleBatu Eken, Zeynep, and Nicoleta Ilie. 2024. "A Critical Review on the Factors Affecting the Bond Strength of Direct Restorative Material Alternatives to Amalgam" Materials 17, no. 19: 4853. https://doi.org/10.3390/ma17194853
APA StyleBatu Eken, Z., & Ilie, N. (2024). A Critical Review on the Factors Affecting the Bond Strength of Direct Restorative Material Alternatives to Amalgam. Materials, 17(19), 4853. https://doi.org/10.3390/ma17194853