A Concept of Thermal Effort for Heat-Induced Metal Plasticity
Abstract
:1. Introduction
2. A Concept of Thermal Effort
2.1. Three-Parametrical Burzyński Hypothesis
2.2. Heat-Induced Yield Surface
2.3. Parametrical Analysis of Three-Parametrical Yield Surface
3. Experiments for Heat-Resistant Steels St12T and 26H2MF
3.1. Experimental Expressions for St12T and 26H2MF Heat-Resistant Steels
3.2. Uniaxial Tension Test
3.3. Uniaxial Compression Test
3.4. Pure Torsion Test
3.5. Determination of and Parameters in the Temperature Function
4. Behavior of Three-Parametrical Yield Surfaces for Experimental Data
5. Thermo-Mechanical Analysis of a Turbine Blade
5.1. Specifics of the High Thermal Loading
5.2. Formulation of Coupled Problem
5.3. Thermal–Mechanical Validation Test
5.4. Thermal Loading and Boundary Data
5.5. Results of Numerical Simulations
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, K.; Guo, W.; Li, D.; Li, P.; Zhang, Y.; Wang, P. Influence of heat treatments on plastic flow of laser deposited Inconel 718: Testing and microstructural based constitutive modeling. Int. J. Plast. 2021, 136, 102865. [Google Scholar] [CrossRef]
- Zhu, Y.; Kang, G.; Kan, Q.; Bruhns, O.T.; Liu, Y. Thermo-mechanically coupled cyclic elasto-viscoplastic constitutive model of metals: Theory and application. Int. J. Plast. 2016, 79, 111–152. [Google Scholar] [CrossRef]
- Ghorbanpour, S.; Zecevic, M.; Kumar, A.; Jahedi, M.; Bicknell, J.; Jorgensen, L.; Beyerlein, I.J.; Knezevic, M. A crystal plasticity model incorporating the effects of precipitates in superalloys: Application to tensile, compressive, and cyclic deformation of Inconel 718. Int. J. Plast. 2017, 99, 162–185. [Google Scholar] [CrossRef]
- Nembach, E.; Pesicka, J.; Langmaack, E. The high-temperature decrease of the yield strength of the γ′ -strengthened superalloys NIMONIC PE16 and NIMONIC 105. Mater. Sci. Eng. 2003, 362, 264–273. [Google Scholar] [CrossRef]
- Yoon, J.W.; Lou, Y.S.; Yoon, J.H.; Glazoff, M.V. Asymmetric yield function based on the stress invariants for pressure sensitive metals. Int. J. Plast. 2014, 56, 184–202. [Google Scholar] [CrossRef]
- Abe, F. Development of creep-resistant steels and alloys for use in power plants. In Structural Alloys for Power Plants: Operational Challenges and High Temperature Materials; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 250–293. [Google Scholar]
- Banaszkiewicz, M. The low-cycle fatigue life assessment method for online monitoring of steam turbine rotors. Int. J. Fatigue 2018, 113, 311–323. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, T.; Zhou, J.; Graham, S.; Hayden, M.; Roe, C. On stress-state dependent plasticity modeling: Significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule. Int. J. Plast. 2011, 27, 217–231. [Google Scholar] [CrossRef]
- Moćko, W.; Kowalewski, Z.L. Evolution of tensile properties of the TiAl6V4 alloy due to the prior cyclic loading history. J. Theor. Appl. Mech. 2014, 52, 847–851. [Google Scholar]
- Mroziński, S.; Golański, G. Influence of temperature change on fatigue properties of P91 steel. Mater. Res. Innovat. 2014, 18, 504–508. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, S.; Yoon, J.W. Strength modeling of sheet metals from shear to plane strain tension. Int. J. Plast. 2020, 134, 102813. [Google Scholar] [CrossRef]
- Hu, Q.; Yoon, J.W. Analytical description of an asymmetric yield function (Yoon2014) by considering anisotropic hardening under non-associated flow rule. Int. J. Plast. 2021, 140, 102978. [Google Scholar] [CrossRef]
- Pęcherski, R.B.; Szeptyński, P.; Nowak, M. An extension of Burzyński hypothesis of material effort accounting for the third invariant of stress tensor. Arch. Metall. Mater. 2011, 56, 503–508. [Google Scholar] [CrossRef]
- Pęcherski, R.B.; Rusinek, A.; Frąś, T.; Nowak, M.; Nowak, Z. Energy-based yield condition for orthotropic materials exhibiting asymmetry of elastic range. Arch. Metall. Mater. 2020, 65, 771–778. [Google Scholar] [CrossRef]
- Lou, Y.S.; Yoon, J.W. Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion. Int. J. Plast. 2018, 101, 125–155. [Google Scholar] [CrossRef]
- Egner, W.; Sulich, P.; Mroziński, S.; Egner, H. Modelling thermo-mechanical cyclic behavior of P91 steel. Int. J. Plast. 2020, 135, 102820. [Google Scholar] [CrossRef]
- Duda, P. Solution of an inverse axisymmetric heat conduction problem in complicated geometry. Int. J. Heat Mass Tran. 2015, 82, 419–428. [Google Scholar] [CrossRef]
- Banaszkiewicz, M.; Dudda, W.; Badur, J. The effect of strength differential on material effort and lifetime of steam turbine rotors under thermo-mechanical load. Eng Trans. 2019, 67, 167–184. [Google Scholar]
- Dudda, W. Mechanical characteristics of 26H2MF and St12T steels under compression and elevated temperatures. Strength Mater. 2020, 52, 325–328. [Google Scholar] [CrossRef]
- Dudda, W. Influence of High Temperatures on the Mechanical Characteristics of 26H2MF and ST12T Steels. Mater. Sci. 2019, 55, 435–439. [Google Scholar] [CrossRef]
- Dudda, W. Issues Concerning the Thermal Effort Concept in Heat Resistive Steels; Press UWM: Olsztyn, Poland, 2021; pp. 1–300. [Google Scholar]
- Burzyński, W. Studjum nad Hipotezami Wytężenia, (Study on Material Effort Hypotheses); Nakładem Akademji Nauk Technicznych (issued by the Academy of Technical Sciences): Lviv, Poland, 1928; pp. 1–192. (In Polish); Reprinted in: Burzyński, W. Dzieła Wybrane; Polska Akademia Nauk: Warszawa, Poland, 1982; Volume 1, pp. 67–258. (In Polish) [Google Scholar]
- Pęcherski, R.B. Burzyński yield condition vis-à-vis the related studies reported in the literature. Eng. Trans. 2008, 56, 383–391. [Google Scholar]
- Pęcherski, R.B.; Nalepka, K.; Frąś, T.; Nowak, M. Inelastic Flow and Failure of Metallic Solids. Material Effort: Study Across Scales. In Constitutive Relations under Impact Loadings; Łodygowski, T., Rusinek, A., Eds.; CISM International Centre for Mechanical Sciences Springer: Vienna, Austria, 2014; Volume 552. [Google Scholar]
- Vadillo, G.; Fernández-Sáez, J.; Pȩcherski, R.B. Some applications of Burzyński yield condition in metal plasticity. Mater. Des. 2011, 32, 628–635. [Google Scholar] [CrossRef]
- Nowak, M.; Ostrowska-Maciejewska, J.; Pęcherski, R.B.; Szeptyński, P. Yield criterion accounting for the third invariant of stress tensor deviator. Part, I. Proposition of the yield criterion based on the concept of influence functions. Eng. Trans. 2011, 59, 273–281. [Google Scholar]
- Moayyedian, F.; Kadkhodayan, M. A modified Burzyński criterion for anisotropic pressure-dependent materials. Sadhana—Acad. Proc. Eng. Sci. 2017, 42, 95–109. [Google Scholar] [CrossRef]
- Moayyedian, F.; Kadkhodayan, M. Modified Burzyński criterion along with AFR and non-AFR for asymmetric anisotropic materials. Arch. Civ. Mech. Eng. 2021, 21, 64. [Google Scholar] [CrossRef]
- Bolaina, C.; Teloxa, J.; Varela, C.; Sierra, F.Z. Thermomechanical stress distributions in a gas turbine blade under the effect of cooling flow variations. J. Turbomach. 2013, 135, 064501. [Google Scholar] [CrossRef]
- Dudda, W.; Kraszewski, B. A theoretical validation of Burzyński hypothesis for stress-strain analysis of heat-resistant steel. Case Stud. Therm. Eng. 2021, 23, 100806. [Google Scholar] [CrossRef]
- Banaszkiewicz, M.; Dudda, W. Applicability of notch stress-strain correction methods to low-cycle fatigue life prediction of turbine rotors subjected to thermomechanical loads. Acta Mech. Autom. 2018, 12, 179–185. [Google Scholar] [CrossRef]
- Sławiński, D.; Ziółkowski, P.; Badur, J. Thermal failure of a second rotor stage in heavy duty gas turbine. Eng. Fail. Anal. 2020, 115, 104672. [Google Scholar] [CrossRef]
- Nesládek, M.; Bartošák, M.; Jurenka, J.; Papuga, J.; Růžička, M.; Měšťánek, P.; Džugan, J. Thermo-mechanical fatigue prediction of a steam turbine shaft. MATEC Web Conf. 2018, 165, 22016. [Google Scholar] [CrossRef]
- Badur, J.; Bryk, M. Accelerated start-up of the steam turbine by means of controlled cooling steam injection. Energy 2020, 173, 1242–1255. [Google Scholar] [CrossRef]
- Duda, P.; Rząsa, D. Numerical method for determining the allowable medium temperature during the heating operation of a thick-walled boiler element in a supercritical steam power plant. Int. J. Energy Res. 2012, 36, 703–709. [Google Scholar] [CrossRef]
- Dudda, W.; Ziółkowski, P.J.; Badur, J. Validation plastic model with hardening of St12T. AIP Conf. Proc. 2019, 2077, 020016. [Google Scholar]
- Reuss, A. Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie. Z. Angew. Math. Mech. 1930, 10, 266–274. [Google Scholar] [CrossRef]
- Novozhilov, V.V. On the physical meaning of stress invariants used in the theory of plasticity [in Russian: O fiziqeskom smysle invariantov napr eni, ispol~zuemyh v teorii plastiqnosti, Prikladna matematika i mehanika]. Appl. Math. Mech. 1952, 16, 617–619. [Google Scholar]
- Mierzejewski, H. Foundations of Mechanics of Plastic Solids; WUT Digital Library: Warsaw, Poland, 1927. (In Polish) [Google Scholar]
- Rychlewski, J. Elastic energy decomposition and limit criteria. Eng. Trans. 2011, 59, 31–63. [Google Scholar]
- Altenbach, H.; Bolchoun, A.; Kolupaev, V.A. Phenomenological Yield and Failure Criteria. In Plasticity of Pressure-Sensitive Materials; Altenbach, H., Öchsner, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 49–152. [Google Scholar]
- Yu, M.-H. Unified Strength Theory and Its Applications; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Beltrami, E. (Ed.) Sulle condizioni di resistenza dei corpi elastici. Il Nuovo Cimento 1885, 18, 145–155. [Google Scholar] [CrossRef]
- Orłowski, K.A.; Ochrymiuk, T.; Atkins, A. Application of fracture mechanics for energetic effects predictions Chile Wood sawing. Wood Sci. Technol. 2013, 47, 949–963. [Google Scholar] [CrossRef]
- Huber, M.T. Specific work of strain as a measure of material effort. Arch. Mech. 2004, 56, 173–190. [Google Scholar]
- Altenbach, H. Strength hypotheses—A never ending story. Tech. Trans. Mech. 2010, 107, 5–15. [Google Scholar]
- Nowak, Z.; Nowak, M.; Pęcherski, R.B. A plane stress elastic-plastic analysis of sheet metal cup deep drawing processes. In 10th Jubilee Conference on Shell Structures—Theory and Applications; Pietraszkiewicz, W., Górski, J., Eds.; CRC Press: London, UK, 2013; Volume 3, pp. 129–132. [Google Scholar]
- Podgórski, J. Limit state condition and the dissipation function for isotropic materials. Arch. Mech. 1984, 36, 323–342. [Google Scholar]
- Frąś, T.; Kowalewski, Z.; Pęcherski, R.B.; Rusinek, A. Applications of Burzyński failure criteria—I. Isotropic materials with asymmetry of elastic range. Eng. Trans. 2010, 58, 1–10. [Google Scholar]
- Frąś, T.; Pęcherski, R.B. Applications of the Burzyński hypothesis of material effort for isotropic solids. Mech. Control 2010, 29, 45–50. [Google Scholar]
- Drucker, D.C. Plasticity theory, strength-differential (SD) phenomenon, and volume expansion in metals and plastics. Met. Trans. 1973, 4, 667–673. [Google Scholar] [CrossRef]
- Drucker, D.C.; Prager, W. Soil mechanics and plastic analysis or limit design. Quart. Appl. Math. 1948, 10, 157–165. [Google Scholar] [CrossRef]
- Wang, W.; Liu, B.; Kodur, V. Effect of temperature on Strength and Elastic Modulus of High-Strength Steel. J. Mater. Civ. Eng. 2013, 25, 174–182. [Google Scholar] [CrossRef]
- Chaboche, J.L. A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 2008, 24, 1642–1693. [Google Scholar] [CrossRef]
- Banaś, K.; Badur, J. Influence of strength differential effect on material effort of a turbine guide vane based on thermoelasoplastic analysis. J. Therm. Stress. 2017, 40, 1368–1385. [Google Scholar] [CrossRef]
- Chróścielewski, J.; Schmidt, R.; Eremeyev, V.A. Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches. Contin. Mech. Thermodyn. 2019, 31, 147–188. [Google Scholar] [CrossRef]
Steel | Chemical Composition (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Grade | Signature | C | Si | V | Cr | Mn | Ni | Cu | Mo |
26H2MF | 24CrMoV55 | 0.23 | 0.52 | 0.25 | 1.54 | 0.30 | 0.12 | 0.17 | 0.60 |
St12T | X22CrMoV12-1 | 0.16 | 0.37 | 0.24 | 11.10 | 0.44 | 0.42 | 0.13 | 0.96 |
Steel | Temperature | Yield Stress (MPa) | Coefficient (–) | |||
---|---|---|---|---|---|---|
(°C) | ||||||
St12T | 20 | 720.3 | 786.0 | 436.37 | 1.091 | 0.4866 |
200 | 656.7 | 731.7 | 401.76 | 1.114 | 0.4883 | |
400 | 608.0 | 666.3 | 367.51 | 1.108 | 0.4997 | |
600 | 487.0 | 639.3 | 319.28 | 1.313 | 0.5271 | |
800 | 160.0 | 290.0 | 197.65 | 1.813 | 1.1033 | |
26H2MF | 20 | 667.3 | 779.0 | 417.60 | 1.167 | 0.4905 |
200 | 610.7 | 693.3 | 377.50 | 1.135 | 0.4855 | |
400 | 567.0 | 628.0 | 346.06 | 1.108 | 0.4866 | |
550 | 507.3 | 573.3 | 311.37 | 1.130 | 0.5001 | |
700 | 388.5 | 460.0 | 238.60 | 1.184 | 0.5696 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudda, W.; Ziółkowski, P.J.; Ziółkowski, P.; Bryk, M.; Badur, J. A Concept of Thermal Effort for Heat-Induced Metal Plasticity. Materials 2024, 17, 4824. https://doi.org/10.3390/ma17194824
Dudda W, Ziółkowski PJ, Ziółkowski P, Bryk M, Badur J. A Concept of Thermal Effort for Heat-Induced Metal Plasticity. Materials. 2024; 17(19):4824. https://doi.org/10.3390/ma17194824
Chicago/Turabian StyleDudda, Waldemar, Piotr Józef Ziółkowski, Paweł Ziółkowski, Mateusz Bryk, and Janusz Badur. 2024. "A Concept of Thermal Effort for Heat-Induced Metal Plasticity" Materials 17, no. 19: 4824. https://doi.org/10.3390/ma17194824
APA StyleDudda, W., Ziółkowski, P. J., Ziółkowski, P., Bryk, M., & Badur, J. (2024). A Concept of Thermal Effort for Heat-Induced Metal Plasticity. Materials, 17(19), 4824. https://doi.org/10.3390/ma17194824