Molecular Dynamics Study on the Sintering Mechanism and Tensile Properties of Novel Cu Nanoparticle/Graphene Nanoplatelet Composite Solder Paste
Abstract
:1. Introduction
2. Molecular Dynamics Modeling and Simulations
2.1. Molecular Dynamics Model
2.2. Simulation Details
3. Results and Discussion
3.1. Sintering and Strengthening Mechanism
3.1.1. CNA Method
3.1.2. MSD Atomic Diffusion
3.1.3. Dislocation Extraction Algorithm
3.2. The Impact of the Different Sintering Parameters on the Mechanical Properties
3.2.1. Addition of GNP
3.2.2. Sintering Temperature
3.2.3. Tensile Strain Rate
4. Conclusions
- (1)
- The addition of GNP and sintering temperature has a great influence on the mechanical properties of the composite paste. Compared with the pure Cu NP solder paste sintered structures, the yield strength of the composite solder paste sintered structures with GNP added increased by 67.7%. The yield strength of the composite solder paste sintered body increased with an increase in temperature, reaching the highest yield strength at a sintering temperature of 650 K.
- (2)
- The tensile strain rate has a certain influence on the tensile process of Cu NP/GNP composite solder paste. A higher strain rate leads to a higher tensile strength and fracture strain of the composite.
- (3)
- Compared with the process of holding temperature and pressure, the influence of the heating and cooling rates in the ascending or descending process on atomic diffusion is not significant. To improve the atomic diffusion, it is necessary to properly increase the holding time and sintering temperature, and reduce the duration of the temperature and pressure increase and decrease.
- (4)
- GNP can effectively prevent dislocation movement and achieve a good strengthening effect. Therefore, the strengthening mechanism of Cu NP/GNP composite solder paste can be attributed to the dislocation strengthening mechanism.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.Y.; Xu, X.Y.; Lin, T.S.; He, P. Recent advances in nano-materials for packaging of electronic devices. J. Mater. Sci.-Mater. Electron. 2019, 30, 13855–13868. [Google Scholar] [CrossRef]
- Xu, Z.X.; Liu, X.; Li, J.J.; Sun, R.; Liu, L. Low-Temperature Sintering of Ag Composite Pastes with Different Metal Organic Decomposition Additions. Materials 2023, 16, 2340. [Google Scholar] [CrossRef] [PubMed]
- Paknejad, S.A.; Mannan, S.H. Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 2017, 70, 1–11. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, F.; Wang, W.; Bai, Y.L.; Yousef, S. A Novel Quantitative Analysis Method for Lead Components in Waste Lead Paste. Metals 2023, 13, 1517. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Bai, H.L.; Jia, Q.; Guo, W.; Liu, L.; Zou, G.S. High Electrical and Thermal Conductivity of Nano-Ag Paste for Power Electronic Applications. Acta Metall. Sin.-Engl. Lett. 2020, 33, 1543–1555. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Zhao, Z.Y.; Zou, G.S.; Wang, W.G.; Liu, L.; Zhang, G.; Zhou, Y. Failure analysis and reliability evaluation of silver-sintered die attachment for high-temperature applications. Microelectron. Reliab. 2019, 94, 46–55. [Google Scholar] [CrossRef]
- Mou, Y.; Peng, Y.; Li, J.J.; Liu, J.X.; Sun, Q.L.; Chen, M.X. Facile Preparation of Cu Micro-Nano Composite Particle Paste for Low Temperature Bonding. In Proceedings of the 2019 20th International Conference on Electronic Packaging Technology (ICEPT), Hong Kong, China, 12–15 August 2019. [Google Scholar]
- Mou, Y.; Liu, J.; Cheng, H.; Peng, Y.; Chen, M. Facile Preparation of Self-Reducible Cu Nanoparticle Paste for Low Temperature Cu-Cu Bonding. JOM 2019, 71, 3076–3083. [Google Scholar] [CrossRef]
- Mou, Y.; Cheng, H.; Peng, Y.; Chen, M.X. Fabrication of reliable Cu-Cu joints by low temperature bonding isopropanol stabilized Cu nanoparticles in air. Mater. Lett. 2018, 229, 353–356. [Google Scholar] [CrossRef]
- Hu, B.; Yang, F.; Peng, Y.; Hang, C.J.; Chen, H.T.; Lee, C.; Yang, S.H.; Li, M.Y. Effect of SiC reinforcement on the reliability of Ag nanoparticle paste for high-temperature applications. J. Mater. Sci.-Mater. Electron. 2019, 30, 2413–2418. [Google Scholar]
- Jamwal, A.; Mittal, P.; Agrawal, R.; Gupta, S.; Kumar, D.; Sadasivuni, K.K.; Gupta, P. Towards sustainable copper matrix composites: Manufacturing routes with structural, mechanical, electrical and corrosion behaviour. J. Compos. Mater. 2020, 54, 2635–2649. [Google Scholar] [CrossRef]
- Garg, P.; Jamwal, A.; Kumar, D.; Sadasivuni, K.K.; Hussain, C.M.; Gupta, P. Advance research progresses in aluminium matrix composites: Manufacturing & applications. J. Mater. Res. Technol. 2019, 8, 4924–4939. [Google Scholar]
- Antunes, M. Application of Graphene-Based Materials. Nanomaterials 2023, 13, 2748. [Google Scholar] [CrossRef]
- Singh, S.B.; Dastgheib, S.A. Characteristics of graphene oxide-like materials prepared from different deashed-devolatilized coal chars and comparison with graphite-based graphene oxide, with or without the ultrasonication treatment. Carbon 2024, 228, 119331. [Google Scholar] [CrossRef]
- Singh, S.B.; Haskin, N.; Dastgheib, S.A. Coal-based graphene oxide-like materials: A comprehensive review. Carbon 2023, 215, 118447. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Manrique, P.; Lei, X.Z.; Xu, R.Y.; Zhou, M.Y.; Kinloch, I.A.; Young, R.J. Copper/graphene composites: A review. J. Mater. Sci. 2019, 54, 12236–12289. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, X.; Xiao, G.D.; Zhang, K.; He, X.; Xin, S.; Liu, X.; Zhong, A.; Chai, Y. Thermal interface material with graphene enhanced sintered copper for high temperature power electronics. Nanotechnology 2021, 32, 315710. [Google Scholar] [CrossRef]
- Ko, Y.H.; Son, K.; Kim, G.; Park, Y.B.; Yu, D.Y.; Bang, J.; Kim, T.S. Effects of graphene oxide on the electromigration lifetime of lead-free solder joints. J. Mater. Sci.-Mater. Electron. 2019, 30, 2334–2341. [Google Scholar] [CrossRef]
- Chu, K.; Wang, X.H.; Wang, F.; Li, Y.B.; Huang, D.J.; Liu, H.; Ma, W.L.; Liu, F.X.; Zhang, H. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network. Carbon 2018, 127, 102–112. [Google Scholar] [CrossRef]
- Wu, Z.J.; Li, M.X.; Tian, S.; Zhang, L.X. Molecular dynamics simulation of sintering of Cu and Au nanoparticles. Int. J. Mod. Phys. B 2020, 34, 2050049. [Google Scholar] [CrossRef]
- Baimova, J.A.; Shcherbinin, S.A. Metal/Graphene Composites: A Review on the Simulation of Fabrication and Study of Mechanical Properties. Materials 2023, 16, 202. [Google Scholar] [CrossRef] [PubMed]
- Izadi, R.; Trovalusci, P.; Fantuzzi, N. A Study on the Effect of Doping Metallic Nanoparticles on Fracture Properties of Polylactic Acid Nanofibres via Molecular Dynamics Simulation. Nanomaterials 2023, 13, 989. [Google Scholar] [CrossRef] [PubMed]
- Poletaev, G.; Gafner, Y.; Gafner, S.; Bebikhov, Y.; Semenov, A. Molecular Dynamics Study of the Devitrification of Amorphous Copper Nanoparticles in Vacuum and in a Silver Shell. Metals 2023, 13, 1664. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.Z.; Tan, C.J.; Gao, C.S.; Liu, Y.; Ye, H.Y.; Zhang, G.Q. Coalescence kinetics and microstructure evolution of Cu nanoparticles sintering on substrates: A molecular dynamics study. J. Mater. Res. Technol. 2022, 17, 1132–1145. [Google Scholar] [CrossRef]
- Gu, M.F.; Liu, T.T.; Xiao, X.Z.; Li, G.; Liao, W.H. Simulation and Experimental Study of the Multisized Silver Nanoparticles Sintering Process Based on Molecular Dynamics. Nanomaterials 2022, 12, 1030. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, P.; Sun, W. Monitoring micro-structural evolution during aluminum sintering and understanding the sintering mechanism of aluminum nanoparticles: A molecular dynamics study. J. Mater. Sci. Technol. 2020, 57, 92–100. [Google Scholar] [CrossRef]
- Yang, S.; Kim, W.; Cho, M. Molecular dynamics study on the coalescence kinetics and mechanical behavior of nanoporous structure formed by thermal sintering of Cu nanoparticles. Int. J. Eng. Sci. 2018, 123, 1–19. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Li, N.; Li, W.; Niu, L.W.; Li, Z.H. Atomistic Study on the Sintering Process and the Strengthening Mechanism of Al-Graphene System. Materials 2022, 15, 2644. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Li, N.; Zhang, L.; Zhang, J.D.; Niu, L.W.; Li, W.; Li, S.T. Atomistic Investigation of the Effects of Different Reinforcements on Al Matrix Composite. Metals 2022, 12, 1252. [Google Scholar] [CrossRef]
- Rong, Y.; He, H.P.; Zhang, L.; Li, N.; Zhu, Y.C. Molecular dynamics studies on the strengthening mechanism of Al matrix composites reinforced by grapnene nanoplatelets. Comput. Mater. Sci. 2018, 153, 48–56. [Google Scholar] [CrossRef]
- Mendelev, M.I.; Kramer, M.J.; Becker, C.A.; Asta, M. Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag. 2008, 88, 1723–1750. [Google Scholar] [CrossRef]
- Mishin, Y.; Farkas, D.; Mehl, M.J.; Papaconstantopoulos, D.A. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 1999, 59, 3393–3407. [Google Scholar] [CrossRef]
- Silvestre, N.; Faria, B.; Lopes, J.N.C. Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics. Compos. Sci. Technol. 2014, 90, 16–24. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, F.; Huang, P. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites. J. Mater. Sci. Technol. 2021, 87, 176–183. [Google Scholar] [CrossRef]
Material | Size (Å) | Number of Atoms |
---|---|---|
Cu NPS | 25 (radius) | 5556 |
GNP | 90 × 90 | 3402 |
Simulation Process | Time (ps) | Temperature (K) | Temperature Change Rate (K/ps) | Pressure (MPa) | Pressure Change Rate (MPa/ps) | Ensemble |
---|---|---|---|---|---|---|
Start End | Start End | |||||
① Relaxation | 50 | 300 300 | 0 | 0.1 0.1 | 0 | NPT |
② T and P rising | 300 | 300 500 | 0.67 | 0.1 600 | 2 | NPT |
③ T and P holding | 300 | 500 500 | 0 | 600 600 | 0 | NPT |
④ T and P reducing | 300 | 500 300 | 0.67 | 600 0.1 | 2 | NPT |
⑤ T and P holding | 300 | 300 300 | 0 | 0.1 0.1 | 0 | NPT |
⑥ Quasi-static tensile | 40 | 300 300 | 0 | 0.1 0.1 | 0 | NPT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Gao, J.; Zhang, L.; Chen, Y.; Zhang, Y.; Zhang, K. Molecular Dynamics Study on the Sintering Mechanism and Tensile Properties of Novel Cu Nanoparticle/Graphene Nanoplatelet Composite Solder Paste. Materials 2024, 17, 4759. https://doi.org/10.3390/ma17194759
Zhang X, Gao J, Zhang L, Chen Y, Zhang Y, Zhang K. Molecular Dynamics Study on the Sintering Mechanism and Tensile Properties of Novel Cu Nanoparticle/Graphene Nanoplatelet Composite Solder Paste. Materials. 2024; 17(19):4759. https://doi.org/10.3390/ma17194759
Chicago/Turabian StyleZhang, Xuezhi, Jian Gao, Lanyu Zhang, Yun Chen, Yu Zhang, and Kai Zhang. 2024. "Molecular Dynamics Study on the Sintering Mechanism and Tensile Properties of Novel Cu Nanoparticle/Graphene Nanoplatelet Composite Solder Paste" Materials 17, no. 19: 4759. https://doi.org/10.3390/ma17194759
APA StyleZhang, X., Gao, J., Zhang, L., Chen, Y., Zhang, Y., & Zhang, K. (2024). Molecular Dynamics Study on the Sintering Mechanism and Tensile Properties of Novel Cu Nanoparticle/Graphene Nanoplatelet Composite Solder Paste. Materials, 17(19), 4759. https://doi.org/10.3390/ma17194759