Preparation and Properties of Nb5+-Doped BCZT-Based Ceramic Thick Films by Scraping Process
Abstract
1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. Materials Characterization
3. Results and Discussion
3.1. Phase Structure and Refinement
3.2. SEM Images and Grain Size Distribution
3.3. Dielectric Properties and Dielectric Response Fitting
3.4. Conduction Mechanism
3.5. Ferroelectric and Field-Induced Strain Performance
4. Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Amm2 | an orthorhombic phase space group |
P4mm | a tetragonal phase space group |
R3m | a rhombohedral phase space group |
BCZT | (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 |
BCZT-xBiNZ | (1 − x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-x(Bi0.5Na0.5)ZrO3 |
BCZTNbx-0.025BiNZ | 0.975(Ba0.85Ca0.15)[(Zr0.1Ti0.9)1−xNbx]O3-0.025(Bi0.5Na0.5)ZrO3 |
BCZTNb0.001-0.025BiNZ | 0.975(Ba0.85Ca0.15)[(Zr0.1Ti0.9)0.999Nb0.001]O3-0.025(Bi0.5Na0.5)ZrO3 |
BiNZ | (Bi0.5Na0.5)ZrO3 |
CPE | constant phase element |
C’ | constant |
d33 | piezoelectric constant |
d33* | converse piezoelectric coefficient |
Ea | activation energy |
Ec | coercive field |
Emax | maximum electric field |
Hys | strain hysteresis |
kb | Boltzmann constant |
Pm | maximum polarization |
P-E | polarization-electric field hysteresis loop |
PNRs | polar nanoregions |
Pr | remnant polarization |
R | circuit resistance |
Rp | Rietveld refinement fitting reliability parameter |
Rwp | Rietveld refinement fitting reliability parameter |
χ2 | Rietveld refinement fitting reliability parameter |
SEM | scanning electron microscope |
S-E | strain-electric field loop |
Smax | unipolar strain under the maximum electric field |
Sunipolar | unipolar strain |
T | temperature |
Tm | the temperature of maximum dielectric constant |
XRD | X-ray diffraction |
Z′ | impedance real part |
Z″ | impedance imaginary part |
εm | maximum dielectric constant |
γ | dispersion factor |
σdc | DC conductivity |
σ0 | constant |
τ | relaxation time |
τ0 | constant |
ΔS | difference in strain at half maximum field |
References
- Limpichaipanit, A.; Ngamjarurojana, A. Strain characteristics of PLZT-based ceramics for actuator applications. Actuators 2023, 12, 74. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Li, X.; Li, L.; Liu, Z.; Zhang, J.; Wang, Y. High piezoelectricity and low strain hysteresis in PMN-PT-based piezoelectric ceramics. J. Adv. Ceram. 2023, 12, 792–802. [Google Scholar] [CrossRef]
- Liu, D.; Zeng, J.; Zheng, L.; Man, Z.; Ruan, X.; Shi, X.; Li, G. High piezoelectric property and low electric field-strain hysteresis of BiAlO3-doped PZT ceramics. J. Inorg. Mater. 2022, 37, 1365–1370. [Google Scholar] [CrossRef]
- Yu, D.; Zhou, C.; Chen, J.; Li, Q.; Li, L.; Yuan, C.; Xu, J.; Rao, G. Large electrostriction-like strain by tailoring relaxor degree in BNT-based ceramics. J. Mater. Sci. Mater. Electron. 2023, 34, 1153. [Google Scholar] [CrossRef]
- Yuan, H.; Li, L.; Hong, H.; Ying, Z.; Zheng, X.; Zhang, L.; Wen, F.; Xu, Z.; Wu, W.; Wang, G. Low sintering temperature, large strain and reduced strain hysteresis of BiFeO3-BaTiO3 ceramics for piezoelectric multilayer actuator applications. Ceram. Int. 2021, 47, 31349–31356. [Google Scholar] [CrossRef]
- Yao, K.; Zhou, C.; Li, Q.; Xiao, Z.; Yuan, C.; Xu, J.; Chen, G.; Rao, G. Large electrostrictive coefficient with optimized electro-strain in BNT-based ceramics with ergodic state. Mater. Sci. Eng. B 2022, 283, 115828. [Google Scholar] [CrossRef]
- Liu, W.; Ren, X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 2009, 103, 257602. [Google Scholar] [CrossRef]
- Song, M.; Sun, X.; Li, Q.; Qian, H.; Liu, Y.; Lyu, Y. Enhanced electrostrictive coefficient and suppressive hysteresis in lead-free Ba(1-x)SrxTiO3 piezoelectric ceramics with high strain. Crystals 2021, 11, 555. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Zhang, T.; Liu, Y.; Lyu, Y. High strain response and low hysteresis in BaZrO3-modified KNN-based lead-free relaxor ceramics. J. Mater. Sci. Mater. Electron. 2021, 32, 16715–16725. [Google Scholar] [CrossRef]
- Zhao, N.; Fan, H.; Li, C.; Huang, F.; Cao, J.; Li, Z. Large strain and low hysteresis in (0.64-x)Bi0.5Na0.5TiO3-0.36Sr0.7Bi0.2TiO3-x(K0.5La0.5)(Ti0.9Zr0.1)O3 piezoceramics. Ceram. Int. 2021, 47, 30399–30405. [Google Scholar] [CrossRef]
- Liu, H.; Hao, Y.; Yang, Z.; Feng, T.; Su, B.; Zhang, X.; Xue, M.; Zhang, B.; Li, J. Exceptional electrostrain with minimal hysteresis and superior temperature stability under low electric field in KNN-based lead-free piezoceramics. J. Adv. Ceram. 2024, 13, 364–372. [Google Scholar] [CrossRef]
- Du, Y.; Qi, Y.; Hu, L.; Wan, H.; Wang, H.; Zhang, Q.; Zhang, G.; Jiang, S.; Shen, M.; Chen, Y. Na0.5Bi0.5TiO3-based ferroelectric relaxor with high thermal stability and anti-fatigue for charge-discharge properties. Ceram. Int. 2021, 47, 15834–15842. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, J.; Zhou, C.; Jiang, L.; Guo, H.; Chen, Y.; Lu, W.; Zhang, H.; Cai, W.; Hu, Y.; et al. Enhanced electric field-induced strain properties in lead-free BF-BT-based piezoceramics by local structure inhomogeneity. ACS Sustain. Chem. Eng. 2022, 10, 1277–1286. [Google Scholar]
- Yuan, J.; Ruan, T.; Li, Q.; Liu, Y.; Lyu, Y. Large strain and reduced hysteresis of BiFeO3-xBaTiO3 lead-free ceramic via multiphase coexistence and relaxor behaviors. Ceram. Int. 2022, 48, 26335–26341. [Google Scholar] [CrossRef]
- Hou, L.; Zhou, C.; Li, Q.; Li, R.; Yuan, C.; Xu, J.; Rao, G. Giant strain with ultra-low hysteresis by tailoring relaxor temperature and PNRs dynamic in BNT-based lead-free piezoelectric ceramics. Ceram. Int. 2022, 48, 13125–13133. [Google Scholar] [CrossRef]
- Tian, A.; Yu, Z.; Xie, A.; Fu, J.; Zuo, R. Multiple local polarization configurations in NKN-based relaxor ferroelectric ceramic with high electrostrictive-like strain. J. Eur. Ceram. Soc. 2024, 44, 7614–7622. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, C.; Wu, B.; Wu, J. Multifunctional BaTiO3-based relaxor ferroelectrics toward excellent energy storage performance and electrostrictive strain benefiting from crossover region. ACS Appl. Mater. Interfaces 2020, 12, 23885–23895. [Google Scholar] [CrossRef]
- Slouka, C.; Kainz, T.; Navickas, E.; Walch, G.; Hutter, H.; Reichmann, K.; Fleig, J. The effect of acceptor and donor doping on oxygen vacancy concentrations in lead zirconate titanate (PZT). Materials 2016, 9, 945. [Google Scholar] [CrossRef] [PubMed]
- Kang, F.; Zhang, L.; He, L.; Sun, Q.; Wang, Z.; Kang, R.; Mao, P.; Zhu, C.; Wang, J. Enhanced electric field induced strain in B-site Sb doped BiFeO3-BaTiO3 lead free ceramics. J. Alloys Compd. 2021, 864, 158917. [Google Scholar] [CrossRef]
- Wang, D.; Cao, M.; Yuan, J.; Zhao, Q.; Li, H.; Zhang, D.; Agathopoulos, S. Enhanced piezoelectric and ferroelectric properties of Nb2O5 modified lead zirconate titanate-based composites. J. Am. Ceram. Soc. 2011, 94, 647–650. [Google Scholar] [CrossRef]
- Habib, M.; Akram, F.; Ahmad, P.; Al-Harbi, F.F.; Din, I.U.; Iqbal, Q.; Ahmed, T.; Khan, S.A.; Hussain, A.; Song, T.K.; et al. Donor multiple effects on the ferroelectric and piezoelectric performance of lead-free BiFeO3-BaTiO3 ceramics. Mater. Lett. 2022, 315, 131950. [Google Scholar] [CrossRef]
- Habib, M.; Lee, M.H.; Kim, D.J.; Choi, H.I.; Kim, M.H.; Kim, W.J.; Song, T.K.; Choi, K.S. Enhanced piezoelectric performance of donor La3+-doped BiFeO3-BaTiO3 lead-free piezoceramics. Ceram. Int. 2020, 46, 7074–7080. [Google Scholar] [CrossRef]
- Li, H.; Fang, B.; Zhang, S.; Lu, X.; Ding, J. Low-temperature sintering PZT-based ceramics for extreme condition application. J. Mater. Sci. Mater. Electron. 2023, 34, 1970. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Q.; Liu, X.; Zheng, Q.; Jiang, N.; Yang, Y.; Kwok, K.W.; Xu, C.; Lin, D. A high-tolerance BNT-based ceramic with excellent energy storage properties and fatigue/frequency/thermal stability. Ceram. Int. 2019, 45, 23233–23240. [Google Scholar] [CrossRef]
- Sun, J.; Yan, G.; Fang, B.; Zhang, S.; Lu, X.; Ding, J. Improving energy storage performance of BLLMT ceramic by doping BZT combining with defect engineering and film scraping process. J. Alloys Compd. 2024, 971, 172708. [Google Scholar] [CrossRef]
- Yan, G.; Xu, L.; Fang, B.; Zhang, S.; Lu, X.; Zhao, X.; Ding, J. Achieving high pulse charge-discharge energy storage properties and temperature stability of (Ba0.98-xLi0.02Lax)(Mg0.04Ti0.96)O3 lead-free ceramics via bandgap and defect engineering. Chem. Eng. J. 2022, 450, 137814. [Google Scholar] [CrossRef]
- Yan, F.; Huang, K.; Jiang, T.; Zhou, X.; Shi, Y.; Ge, G.; Shen, B.; Zhai, J. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater. 2020, 30, 392–400. [Google Scholar] [CrossRef]
- Beuerlein, M.A.; Kumar, N.; Usher, T.M.; Brown-Shaklee, H.J.; Raengthon, N.; Reaney, I.M.; Cann, D.P.; Jones, J.L.; Brennecka, G.L. Current understanding of structure-processing-property relationships in BaTiO3-Bi(M)O3 dielectrics. J. Am. Ceram. Soc. 2016, 99, 2849–2870. [Google Scholar] [CrossRef]
- He, X.; Fang, B.; Zhang, S.; Lu, X.; Ding, J. Preparation and properties of Nd-doped BCTH lead-free ceramics by solid-phase twin crystal method. Curr. Appl. Phys. 2022, 38, 30–39. [Google Scholar] [CrossRef]
- Tsuji, K.; Ndayishimiye, A.; Lowum, S.; Floyd, R.; Wang, K.; Wetherington, M.; Maria, J.P.; Randall, C.A. Single step densification of high permittivity BaTiO3 ceramics at 300 °C. J. Eur. Ceram. Soc. 2020, 40, 1280–1284. [Google Scholar] [CrossRef]
- Bijalwan, V.; Hughes, H.; Pooladvand, H.; Tofel, P.; Nan, B.; Holcman, V.; Bai, Y.; Button, T.W. The effect of sintering temperature on the microstructure and functional properties of BCZT-xCeO2 lead free ceramics. Mater. Res. Bull. 2019, 114, 121–129. [Google Scholar] [CrossRef]
- Kuhfuss, M.; Maier, J.G.; Hall, D.A.; Xie, B.; Kleppe, A.K.; Martin, A.; Kakimoto, K.I.; Khansur, N.H.; Webber, K.G. In situ electric field-dependent structural changes in (Ba,Ca)(Zr,Ti)O3 with varying grain size. J. Appl. Phys. 2024, 135, 174101. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, Q.; Zhou, C.; Gao, R.; Zhang, S.; Li, Z.; Xu, R.; Chen, G.; Deng, X.; Wang, Z.; et al. Synergistic effect of grain size and phase boundary on energy storage performance and electric properties of BCZT ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 9167–9175. [Google Scholar] [CrossRef]
- Dai, Z.; Xie, J.; Chen, Z.; Zhou, S.; Liu, J.; Liu, W.; Xi, Z.; Ren, X. Improved energy storage density and efficiency of (1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3-xBiMg2/3Nb1/3O3 lead-free ceramics. Chem. Eng. J. 2021, 410, 128341. [Google Scholar] [CrossRef]
- Deng, A.; Wu, J. Optimized strain properties with small hysteresis in BNT-based ceramics with ergodic relaxor state. J. Eur. Ceram. Soc. 2021, 41, 5147–5154. [Google Scholar] [CrossRef]
- German, R.M.; Suri, P.; Park, S.J. Liquid phase sintering. J. Mater. Sci. 2009, 44, 1–39. [Google Scholar] [CrossRef]
- Jaiban, P.; Theethuan, T.; Khumtrong, S.; Lokakaew, S.; Kongchana, P.; Watcharapasorn, A. The effects of A-site doping on crystal structure, microstructure and electrical properties of (Ba0.85Ca0.15) Zr0.1Ti0.9O3 ceramics. Chiang Mai J. Sci. 2022, 49, 1150–1163. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Xue, H.; Yin, J.; Wu, J. Temperature-independent large strain with small hysteresis in Sb-modified BNT-based lead-free ceramics. J. Am. Ceram. Soc. 2022, 105, 2116–2127. [Google Scholar] [CrossRef]
- Wang, Y.; Jie, W.; Yang, C.; Wei, X.; Hao, J. Colossal permittivity materials as superior dielectrics for diverse applications. Adv. Funct. Mater. 2019, 29, 1808118. [Google Scholar] [CrossRef]
- Li, W.; Fang, B.; Lu, X.; Zhang, S.; Ding, J. (Bi0.5Na0.5)(Zr0.97W0.01Fe0.02)O3 doping effects on KNN-based lead-free ceramics prepared via two-step sintering technique. Int. J. Appl. Ceram. Technol. 2024, 21, 515–524. [Google Scholar] [CrossRef]
- Jaiban, P.; Theethuan, T.; Khumtrong, S.; Lokakaew, S.; Watcharapasorn, A. The effects of donor (Nb5+) and acceptor (Cu2+, Zn2+, Mn2+, Mg2+) doping at B-site on crystal structure, microstructure, and electrical properties of (Ba0.85Ca0.15)Zr0.1Ti0.9O3 ceramics. J. Alloys Compd. 2022, 899, 162909. [Google Scholar] [CrossRef]
- Li, L.; Roncal-Herrero, T.; Harrington, J.; Milne, S.J.; Brown, A.P.; Dean, J.S.; Sinclair, D.C. Anomalous grain boundary conduction in BiScO3-BaTiO3 high temperature dielectrics. Acta Mater. 2021, 216, 117136. [Google Scholar] [CrossRef]
- Wang, L.; Bai, W.; Zhao, X.; Ding, Y.; Wu, S.; Zheng, P.; Li, P.; Zhai, J. Influences of rare earth site engineering on piezoelectric and electromechanical response of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 6560–6573. [Google Scholar] [CrossRef]
- Sareecha, N. Marked influence of low Bi doping levels on the structural and thermal transport properties of nonstoichiometric 0.98 PbTiO3 ceramics. Mater. Chem. Phys. 2019, 229, 124–129. [Google Scholar] [CrossRef]
- Tang, X.G.; Chew, K.H.; Chan, H.L. Diffuse phase transition and dielectric tunability of Ba(ZryTi1-y)O3 relaxor ferroelectric ceramics. Acta Mater. 2004, 52, 5177–5183. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, P.; Guo, Q.; Long, J.; Huang, T.; Yao, Z.; Cao, M.; Liu, H.; Hao, H. High electric field-induced strain properties in La-doped Pb(In1/2Nb1/2) O3-PbZrO3-PbTiO3 relaxor ferroelectric ceramics. Ceram. Int. 2023, 49, 31582–31590. [Google Scholar] [CrossRef]
- Dong, S.; Guo, F.; Long, W.; Li, X.; Fang, P.; Dai, Z.; Xi, Z. Enhanced piezoelectric and electric field induced stain response in Bi0.5Na0.5TiO3-Ba(Zr0.055Ti0.945)O3 ceramics modified by (K0.5Na0.5)NbO3. J. Mater. Sci. Mater. Electron. 2020, 31, 13979–13986. [Google Scholar] [CrossRef]
Sintering Temperature | Space Group | a (Å) | b (Å) | c (Å) | α = β = γ (°) | Fraction (%) |
---|---|---|---|---|---|---|
1305 °C | P4mm | 4.019066 | 4.019066 | 4.015660 | 90 | 26.79 |
R3m | 4.010242 | 4.010242 | 4.010242 | 89.746 | 8.17 | |
Amm2 | 3.994396 | 5.674225 | 5.675882 | 90 | 65.04 | |
1325 °C | P4mm | 4.014551 | 4.014551 | 4.013084 | 90 | 27.81 |
R3m | 4.006793 | 4.006793 | 4.006793 | 89.845 | 26.01 | |
Amm2 | 4.001672 | 5.677942 | 5.689648 | 90 | 46.18 | |
1345 °C | P4mm | 4.012797 | 4.012797 | 4.008653 | 90 | 5.49 |
R3m | 4.011222 | 4.011222 | 4.011222 | 90.019 | 30.51 | |
Amm2 | 3.992369 | 5.675968 | 5.687695 | 90 | 64.00 |
Compounds | Sunipolar (%) | Hys (%) | Electric Field (kV/cm) | Ref. |
---|---|---|---|---|
Ba0.6Sr0.4TiO3 | 0.07 | 4 | 60 | [8] |
0.91(K0.48Na0.52)Nb0.965Sb0.035-0.03Bi0.5 (K0.18Na0.82)0.5ZrO3-0.06BaZrO3 | 0.05 | 8 | 40 | [9] |
0.94BaTiO3-0.06KNbO3 | 0.10 | 3 | 80 | [17] |
0.67BiFe99.75%Sb0.25%O3-0.33BaTiO3 | 0.168 | 49 | 50 | [19] |
0.70Bi1.03FeO3-0.30Ba0.985La0.015TiO3 | 0.188 | 20 | 55 | [22] |
0.91Bi0.5Na0.5TiO3-0.07Ba(Zr0.055Ti0.945)O3-0.02(K0.5Na0.5)NbO3 | 0.31 | 33.5 | 65 | [47] |
BCZTNb0.001-0.025BiNZ | 0.104 | 1.34 | 60 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Fang, B.; Lu, X.; Zhang, S.; Ding, J. Preparation and Properties of Nb5+-Doped BCZT-Based Ceramic Thick Films by Scraping Process. Materials 2024, 17, 4348. https://doi.org/10.3390/ma17174348
Zou Y, Fang B, Lu X, Zhang S, Ding J. Preparation and Properties of Nb5+-Doped BCZT-Based Ceramic Thick Films by Scraping Process. Materials. 2024; 17(17):4348. https://doi.org/10.3390/ma17174348
Chicago/Turabian StyleZou, Yang, Bijun Fang, Xiaolong Lu, Shuai Zhang, and Jianning Ding. 2024. "Preparation and Properties of Nb5+-Doped BCZT-Based Ceramic Thick Films by Scraping Process" Materials 17, no. 17: 4348. https://doi.org/10.3390/ma17174348
APA StyleZou, Y., Fang, B., Lu, X., Zhang, S., & Ding, J. (2024). Preparation and Properties of Nb5+-Doped BCZT-Based Ceramic Thick Films by Scraping Process. Materials, 17(17), 4348. https://doi.org/10.3390/ma17174348