Adsorption of Selected Herbicides on Activated Carbon from Single- and Multi-Component Systems—Error Analysis in Isotherm Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbent and Adsorbates
2.2. Methods and Techniques of Activated Carbon Characterization
2.3. Measurement of Adsorption Isotherms from Aqueous Solutions
3. Results and Discussion
3.1. Adsorbent Characterization
3.2. Error Analysis in Measurements of Adsorption Isotherms from Single-Component System
3.3. Error Analysis in Measurements of Adsorption Isotherms from Multi-Component Systems
A(λ2) = ceq A εA2 + ceq B εB2
4. Conclusions
- The error analysis of the measurements of adsorption isotherms of single substances showed the differentiation in the values of standard deviations of the determined quantities, i.e., equilibrium concentration and absorbance. The largest deviations were obtained for the 2,4-D/RIB system, which confirmed the largest scatter of experimental points on the adsorption isotherm.
- Despite the relatively large dispersion of experimental points of adsorption isotherms, the trend in the adsorption process can be clearly determined depending on the type of adsorbate and the conditions of the adsorption process. This in turn confirms the reliability of the presented results.
- The presence of random errors and the absence of systematic and gross errors were found. The source of random errors was primarily the high inhomogeneity of the adsorbent (variation in grain sizes, physicochemical and structural properties of individual granules) and the method of measuring equilibrium isotherms consisted of the use of many independent adsorbent and adsorbate solution weights. The influence of other variables and factors such as (i) the imprecise preparation of adsorption systems; (ii) instability of external factors during the adsorption process (changes in the form of adsorbate); (iii) inaccurate dilution and measurement of adsorbate solutions; and (iv) the instability of measuring equipment is also probable.
- Significant uncertainties in determining the Freundlich equation parameters m and log K (SDav. = 7–12%) were found.
- The results of equilibrium adsorption studies conducted at different temperatures showed a positive trend in the dependence of adsorption on temperature for the 2,4-D/RIB system (increase in mobility of adsorbate molecules in the solution, wider penetration of the carbon porous structure), and a negative trend for the 4-CPA/RIB system (increase in solubility of the compound, increase in energy of oscillation of molecules enabling desorption).
- In acidic conditions (pH < pKa), the highest adsorption was obtained (mechanism–dispersive interactions between π electrons of the adsorbate aromatic ring and π electrons of the carbon graphene structure). In neutral pH conditions (pH > pKa), a worse adsorption efficiency was observed (mechanism–electrostatic interactions).
- Analysis of the herbicide adsorption (3-CPP) in the presence of an accompanying substance (4-NA) showed a clear decrease in comparison with adsorption from a single-component solution. The adsorption mechanism of the co-adsorbates was strongly competitive in relation to the same active sites placed on the activated carbon surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El-Khaiary, M.I.; Malash, G.F. Common data analysis errors in batch adsorption studies. Hydrometallurgy 2011, 105, 314–320. [Google Scholar] [CrossRef]
- Hadi, M.; Samarghandi, M.; Mckay, G. Equilibrium two-parameter isotherms of acid dyes sorption by activated carbons: Study of residual errors. Chem. Eng. J. 2010, 160, 408–416. [Google Scholar] [CrossRef]
- Nayak, A.; Pal, A. Development and validation of an adsorption kinetic model at solid-liquid interface using normalized Gudermannian function. J. Mol. Liq. 2019, 276, 67–77. [Google Scholar] [CrossRef]
- Sarici-Özdemir, Ç.; Önal, Y. Error anlaysis studies of dye adsorption onto activated carbon from aqueous solutions. Part. Sci. Technol. 2014, 32, 20–27. [Google Scholar] [CrossRef]
- Watwe, V.; Bandal, G.; Kulkarni, P. Source-normalized error analysis method for accurate prediction of adsorption isotherm: Application to Cu(II) adsorption on PVA-blended alginate beads. J. Iran. Chem. Soc. 2023, 20, 949–959. [Google Scholar] [CrossRef]
- Yan, F.; Chu, Y.; Zhang, K.; Zhang, F.; Bhandari, N.; Ruan, G.; Dai, Z.; Liu, Y.; Zhang, Z.; Kan, A.; et al. Determination of adsorption isotherm parameters with correlated errors by measurement error models. Chem. Eng. J. 2015, 281, 921–930. [Google Scholar] [CrossRef]
- Kaushal, A.; Singh, S. Critical analysis of adsorption data statistically. Appl. Water Sci. 2017, 7, 3191–3196. [Google Scholar] [CrossRef]
- Alam, M.; Muyibi, S.; Toramae, J. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches. J. Environ. Sci. 2007, 19, 674–677. [Google Scholar] [CrossRef]
- de Oliveira, J.; Nunes, K.; Estumano, D.; Féris, L. Applying the Bayesian Technique, Statistical Analysis, and the Maximum Adsorption Capacity in a Deterministic Way for Caffeine Removal by Adsorption: Kinetic and Isotherm Modeling. Ind. Eng. Chem. Res. 2024, 63, 1530–1545. [Google Scholar] [CrossRef]
- Langmuir, I. The dissociation of hydrogen into atoms-III-The mechanism of the reaction. J. Am. Chem. Soc. 1916, 38, 1145–1156. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. II. Liquids. J. Am. Chem. Soc. 1917, 39, 1848–1906. [Google Scholar] [CrossRef]
- Ali, D.J.; Al-Bayati, R.A.; Alani, R.R. Adsorption-Desorption and Theoretical Study of Propranolol Hydrochloride Drug on Chitosan and Cellulose Acetate Surfaces. Br. J. Pharm. Res. 2016, 10, 1–8. [Google Scholar] [CrossRef]
- Temkin, M.; Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim. Urss 1940, 12, 327–356. [Google Scholar]
- Zolgharnein, J.; Asanjarani, N.; Shariatmanesh, T. Taguchi L16 orthogonal array optimization for Cd (II) removal using Carpinus betulus tree leaves: Adsorption characterization. Int. Biodeterior. Biodegrad. 2013, 85, 66–77. [Google Scholar] [CrossRef]
- Subramanyam, B.; Das, A. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means. J. Environ. Health Sci. Eng. 2014, 12, 92. [Google Scholar] [CrossRef]
- Rahman, M.; Muttakin, M.; Pal, A.; Shafiullah, A.; Saha, B. A Statistical Approach to Determine Optimal Models for IUPAC-Classified Adsorption Isotherms. Energies 2019, 12, 4565. [Google Scholar] [CrossRef]
- Ncibi, M. Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. J. Hazard. Mater. 2008, 153, 207–212. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jiang, M.; Yu, X.; Niu, N.; Chen, L. Application of lignin adsorbent in wastewater Treatment: A review. Sep. Purif. Technol. 2022, 302, 122116. [Google Scholar] [CrossRef]
- Motaghi, H.; Arabkhani, P.; Parvinnia, M.; Asfaram, A. Simultaneous adsorption of cobalt ions, azo dye, and imidacloprid pesticide on the magnetic chitosan/activated carbon@UiO-66 bio-nanocomposite: Optimization, mechanisms, regeneration, and application. Sep. Purif. Technol. 2022, 284, 120258. [Google Scholar] [CrossRef]
- Pooresmaeil, M.; Namazi, H. Application of polysaccharide-based hydrogels for water treatments. In Hydrogels Based on Natural Polymers; Elsevier: Amsterdam, The Netherlands, 2020; pp. 411–455. [Google Scholar]
- Djama, C.; Bouguettoucha, A.; Chebli, D.; Amrane, A.; Tahraoui, H.; Zhang, J.; Mouni, L. Experimental and Theoretical Study of Methylene Blue Adsorption on a New Raw Material, Cynara scolymus-A Statistical Physics Assessment. Sustainability 2023, 15, 10364. [Google Scholar] [CrossRef]
- Ealias, A.; Meda, G.; Tanzil, K. Recent progress in sustainable treatment technologies for the removal of emerging contaminants from wastewater: A review on occurrence, global status and impact on biota. Rev. Environ. Contam. Toxicol. 2024, 262, 16. [Google Scholar] [CrossRef]
- Abedpour, H.; Moghaddas, J.; Borhani, M.; Borhani, T. Separation of toxic contaminants from water by silica aerogel-based adsorbents: A comprehensive review. J. Water Process Eng. 2023, 53, 103676. [Google Scholar] [CrossRef]
- Bhattacharjee, T.; Konwar, A.; Boruah, J.; Chowdhury, D.; Majumdar, G. A sustainable approach for heavy metal remediation from water using carbon dot based composites: A review. J. Hazard. Mater. Adv. 2023, 10, 100295. [Google Scholar] [CrossRef]
- Padron-Ramirez, I.; Torres-Figueredo, N.; Corcho-Valdes, A.L.; de Leon-Cabrera, J.P.; Chao-Mujica, F.J.; Cruz, K.V.; Antuch, M.; Deschamps, J.; Reguera, E.; Desdin-Garcia, L.F. Methane and carbon dioxide adsorption on carbon nano-onions synthesized by the submerged arc-discharge method. Adsorpt.-J. Int. Adsorpt. Soc. 2023, 30, 25–38. [Google Scholar] [CrossRef]
- Shichalin, O.; Yarusova, S.; Ivanov, N.; Papynov, E.; Belov, A.; Azon, S.; Buravlev, I.; Myagchilov, A.; Fedorets, A.; Rastorguev, V.; et al. Calcium silicate solid-state matrices from boric acid production waste for 60Co removal and immobilization by spark plasma sintering. J. Water Process Eng. 2024, 59, 105042. [Google Scholar] [CrossRef]
- Ivanov, N.; Dran’kov, A.; Shichalin, O.; Lembikov, A.; Buravlev, I.; Mayorov, V.; Balanov, M.; Rogachev, K.; Kaspruk, G.; Pisarev, S.; et al. Composite magnetic sorbents based on magnetic Fe3O4 coated by Zn and Al layered double hydroxide for U(VI) removal from aqueous media. J. Radioanal. Nucl. Chem. 2024, 333, 1213–1230. [Google Scholar] [CrossRef]
- Amiri, M.; Raayatpisheh, M.; Radi, M.; Amiri, S. Preparation and characterization of biopolymer-based adsorbents and their application for methylene blue removal from wastewater. Sci. Rep. 2023, 13, 17263. [Google Scholar] [CrossRef]
- Aksu, Z.; Kabasakal, E. Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon. Sep. Purif. Technol. 2004, 35, 223–240. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A.; Swiatkowski, A.; Tarasiuk, B. Adsorption of selected herbicides from aqueous solutions on activated carbon. J. Therm. Anal. Calorim. 2010, 101, 785–794. [Google Scholar] [CrossRef]
- Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A.; Swiatkowski, A.; Buczek, B. Adsorption of chlorophenoxy pesticides on activated carbon with gradually removed external particle layers. Chem. Eng. J. 2017, 308, 408–418. [Google Scholar] [CrossRef]
- Kusmierek, K.; Szala, M.; Swiatkowski, A. Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solutions on carbonaceous materials obtained by combustion synthesis. J. Taiwan Inst. Chem. Eng. 2016, 63, 371–378. [Google Scholar] [CrossRef]
- Nejati, K.; Davary, S.; Saati, M. Study of 2,4-dichlorophenoxyacetic acid (2,4-D) removal by Cu-Fe-layered double hydroxide from aqueous solution. Appl. Surf. Sci. 2013, 280, 67–73. [Google Scholar] [CrossRef]
- de Jonge, H.; de Jonge, L. Influence of pH and solution composition on the sorption of glyphosate and prochloraz to a sandy loam soil. Chemosphere 1999, 39, 753–763. [Google Scholar] [CrossRef]
- Fontecha-Cámara, M.; López-Ramón, M.; Alvarez-Merino, M.; Moreno-Castilla, C. Effect of surface chemistry, solution pH, and ionic strength on the removal of herbicides diuron and amitrole from water by an activated carbon fiber. Langmuir 2007, 23, 1242–1247. [Google Scholar] [CrossRef]
- Kearns, J.; Wellborn, L.; Summers, R.; Knappe, D. 2,4-D adsorption to biochars: Effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water Res. 2014, 62, 20–28. [Google Scholar] [CrossRef]
- Ho, Y.; Chiu, W.; Wang, C. Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresour. Technol. 2005, 96, 1285–1291. [Google Scholar] [CrossRef]
- Chan, L.; Cheung, W.; Allen, S.; McKay, G. Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon. Chin. J. Chem. Eng. 2012, 20, 535–542. [Google Scholar] [CrossRef]
- Rengaraj, S.; Yeon, J.; Kim, Y.; Jung, Y.; Ha, Y.; Kim, W. Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H: Kinetics, isotherms and error analysis. J. Hazard. Mater. 2007, 143, 469–477. [Google Scholar] [CrossRef]
- Gimbert, F.; Morin-Crini, N.; Renault, F.; Badot, P.; Crini, G. Adsorption isotherm models for dye removal by cationized starch-based material in a single component systera: Error analysis. J. Hazard. Mater. 2008, 157, 34–46. [Google Scholar] [CrossRef]
- Sivarajasekar, N.; Baskar, R. Adsorption of basic red 9 onto activated carbon derived from immature cotton seeds: Isotherm studies and error analysis. Desalination Water Treat. 2014, 52, 7743–7765. [Google Scholar] [CrossRef]
- Rahdar, S.; Rahdar, A.; Khodadadi, M.; Ahmadi, S. Error analysis of adsorption isotherm models for penicillin G onto magnesium oxide nanoparticles. Appl. Water Sci. 2019, 9, 190. [Google Scholar] [CrossRef]
- Karri, R.; Sahu, J.; Jayakumar, N. Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: Error analysis of linear and non-linear methods. J. Taiwan Inst. Chem. Eng. 2017, 80, 472–487. [Google Scholar] [CrossRef]
- Terdputtakun, A.; Arqueropanyo, O.; Sooksamiti, P.; Janhom, S.; Naksata, W. Adsorption isotherm models and error analysis for single and binary adsorption of Cd(II) and Zn(II) using leonardite as adsorbent. Environ. Earth Sci. 2017, 76, 777. [Google Scholar] [CrossRef]
- Popovici, D.; Neagu, M.; Dusescu-Vasile, C.; Bombos, D.; Mihai, S.; Oprescu, E. Adsorption of p-nitrophenol onto activated carbon prepared from fir sawdust: Isotherm studies and error analysis. React. Kinet. Mech. Catal. 2021, 133, 483–500. [Google Scholar] [CrossRef]
- Balarak, D.; Salari, A. Error analysis of adsorption isotherm models for sulfamethazine onto multi walled carbon nanotubes. J. Pharm. Res. Int. 2018, 25, 1–10. [Google Scholar] [CrossRef]
- Curkovic, L.; Asperger, D.; Babic, S.; Zupan, J. Adsorption of enrofloxacin onto natural zeolite: Kinetics, thermodynamics, isotherms and error analysis. Indian J. Chem. Technol. 2018, 25, 565–571. [Google Scholar]
- Marvin 14.8.25.0 Suite Program Version 19.9; ChemAxon Ltd.: Budapest, Hungary, 2019.
- Blachnio, M.; Kusmierek, K.; Swiatkowski, A.; Derylo-Marczewska, A. Adsorption of phenoxyacetic herbicides from water on carbonaceous and non-carbonaceous adsorbents. Molecules 2023, 28, 5404. [Google Scholar] [CrossRef]
- Yalkowsky, S.H.; He, Y.; Jain, P. Handbook of Aqueous Solubility Data; CRC Press Library of Congress: Washington, DC, USA, 2010. [Google Scholar]
- Blachnio, M.; Kusmierek, K.; Swiatkowski, A.; Derylo-Marczewska, A. Waste-based adsorbents for the removal of phenoxyacetic herbicides from water: A comprehensive review. Sustainability 2023, 15, 16516. [Google Scholar] [CrossRef]
- Dombrowski, R.J.; Lastoskie, C.M.; Hyduke, D.R. The Horvath-Kawazoe method revisited. Colloids Surf. A-Physicochem. Eng. Asp. 2001, 187, 23–39. [Google Scholar] [CrossRef]
- Montes-Morán, M.A.; Suárez, D.; Menéndez, J.A.; Fuente, E. On the nature of basic sites on carbon surfaces: An overview. Carbon 2004, 42, 1219–1225. [Google Scholar] [CrossRef]
- Blachnio, M.; Derylo-Marczewska, A.; Charmas, B.; Zienkiewicz-Strzalka, M.; Bogatyrov, V.; Galaburda, M. Activated Carbon from Agricultural Wastes for Adsorption of Organic Pollutants. Molecules 2020, 25, 5105. [Google Scholar] [CrossRef] [PubMed]
- Zienkiewicz-Strzalka, M.; Blachnio, M.; Derylo-Marczewska, A.; Winter, S.; Maciejewska, M. Mesoporous Carbons and Highly Cross-Linking Polymers for Removal of Cationic Dyes from Aqueous Solutions—Studies on Adsorption Equilibrium and Kinetics. Materials 2024, 17, 1374. [Google Scholar] [CrossRef] [PubMed]
Code | Molecular Weight [g/mol] | Ionization Constant pKa | Solubility [g/L] | Van der Waals Volume [Å3] | Maximal Projection Area [Å2] |
---|---|---|---|---|---|
4-CPA | 186.59 | 3.14 | 0.96 | 149.71 | 56.50 |
2,4-D | 221.04 | 2.81 | 0.68 | 163.66 | 60.90 |
3-CPP | 200.62 | 3.27 | 1.20 | 166.83 | 56.64 |
4-NA | 138.12 | 1.00 | 0.57 | 115.97 | 47.44 |
Carbon | SBET 1 [m2/g] | Vt 2 [cm3/g] | Vmic (t-plot) 3 [cm3/g] | Dh 4 [nm] | Dmo (des. BJH) 5 [nm] | Dmo (HK) 6 [nm] | Dmo (DFT) 7 [nm] | pHpzc 8 |
---|---|---|---|---|---|---|---|---|
RIB | 1052 | 0.65 | 0.46 | 2.5 | 3.12 | 0.66 | 0.57 | 7.8 |
Code | No | m | log K | SD(log a) | SSRg 1 | SSRd 2 | R2 |
---|---|---|---|---|---|---|---|
2,4-D (25 °C) | I | 0.178 ± 0.043 | 2.140 ± 0.552 | 0.087 | 0.131 | 0.113 | 0.537 |
II | 0.241 ± 0.034 | 1.841 ± 0.289 | 0.070 | 0.244 | 0.073 | 0.769 | |
III | 0.184 ± 0.024 | 2.070 ± 0.298 | 0.054 | 0.166 | 0.044 | 0.792 | |
IV | 0.286 ± 0.034 | 1.320 ± 0.179 | 0.057 | 0.222 | 0.048 | 0.822 | |
av. | 0.218 ± 0.025 | 1.621 ± 0.195 | |||||
2,4-D (45 °C) | I | 0.193 ± 0.021 | 2.698 ± 0.322 | 0.058 | 0.283 | 0.050 | 0.850 |
II | 0.259 ± 0.046 | 1.952 ± 0.223 | 0.071 | 0.270 | 0.075 | 0.783 | |
III | 0.202 ± 0.024 | 2.334 ± 0.305 | 0.058 | 0.234 | 0.050 | 0.825 | |
IV | 0.216 ± 0.019 | 2.204 ± 0.214 | 0.045 | 0.261 | 0.030 | 0.896 | |
av. | 0.213 ± 0.017 | 2.295 ± 0.172 | |||||
4-CPA (25 °C) | I | 0.324 ± 0.033 | 1.520 ± 0.168 | 0.052 | 0.261 | 0.040 | 0.866 |
II | 0.205 ± 0.013 | 2.369 ± 0.158 | 0.029 | 0.213 | 0.013 | 0.945 | |
III | 0.223 ± 0.022 | 2.198 ± 0.231 | 0.046 | 0.219 | 0.032 | 0.873 | |
IV | 0.275 ± 0.037 | 1.814 ± 0.263 | 0.065 | 0.236 | 0.064 | 0.786 | |
av. | 0.226 ± 0.021 | 1.989 ± 0.213 | |||||
4-CPA (45 °C) | I | 0.269 ± 0.028 | 1.497 ± 0.437 | 0.062 | 0.139 | 0.058 | 0.707 |
II | 0.210 ± 0.016 | 2.039 ± 0.169 | 0.032 | 0.170 | 0.015 | 0.917 | |
III | 0.191 ± 0.021 | 2.242 ± 0.261 | 0.042 | 0.149 | 0.027 | 0.847 | |
IV | 0.243 ± 0.026 | 1.758 ± 0.201 | 0.044 | 0.173 | 0.030 | 0.854 | |
av. | 0.227 ± 0.020 | 1.880 ± 0.203 | |||||
3-CPP (25 °C) | I | 0.253 ± 0.037 | 1.290 ± 0.207 | 0.076 | 0.273 | 0.082 | 0.769 |
II | 0.318 ± 0.026 | 1.049 ± 0.095 | 0.049 | 0.362 | 0.036 | 0.909 | |
III | 0.187 ± 0.042 | 1.760 ± 0.426 | 0.101 | 0.196 | 0.152 | 0.563 | |
IV | 0.256 ± 0.020 | 1.497 ± 0.128 | 0.045 | 0.325 | 0.030 | 0.915 | |
av. | 0.266 ± 0.022 | 1.233 ± 0.126 | |||||
4-NA (25 °C) | I | 0.356 ± 0.033 | 1.633 ± 0.194 | 0.125 | 1.806 | 0.233 | 0.886 |
II | 0.390 ± 0.041 | 1.504 ± 0.201 | 0.137 | 1.738 | 0.282 | 0.860 | |
III | 0.319 ± 0.034 | 1.849 ± 0.251 | 0.139 | 1.702 | 0.291 | 0.854 | |
IV | 0.314 ± 0.017 | 1.890 ± 0.127 | 0.073 | 1.928 | 0.080 | 0.960 | |
av. | 0.335 ± 0.021 | 1.717 ± 0.122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blachnio, M.; Zienkiewicz-Strzalka, M.; Derylo-Marczewska, A. Adsorption of Selected Herbicides on Activated Carbon from Single- and Multi-Component Systems—Error Analysis in Isotherm Measurements. Materials 2024, 17, 4232. https://doi.org/10.3390/ma17174232
Blachnio M, Zienkiewicz-Strzalka M, Derylo-Marczewska A. Adsorption of Selected Herbicides on Activated Carbon from Single- and Multi-Component Systems—Error Analysis in Isotherm Measurements. Materials. 2024; 17(17):4232. https://doi.org/10.3390/ma17174232
Chicago/Turabian StyleBlachnio, Magdalena, Malgorzata Zienkiewicz-Strzalka, and Anna Derylo-Marczewska. 2024. "Adsorption of Selected Herbicides on Activated Carbon from Single- and Multi-Component Systems—Error Analysis in Isotherm Measurements" Materials 17, no. 17: 4232. https://doi.org/10.3390/ma17174232
APA StyleBlachnio, M., Zienkiewicz-Strzalka, M., & Derylo-Marczewska, A. (2024). Adsorption of Selected Herbicides on Activated Carbon from Single- and Multi-Component Systems—Error Analysis in Isotherm Measurements. Materials, 17(17), 4232. https://doi.org/10.3390/ma17174232