Ultrathin Titanium Dioxide Coating Enables High-Rate and Long-Life Lithium Cobalt Oxide
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, C.; Li, J.; Yin, Z.W.; Huang, W.; Zhao, Q.; Weng, Q.; Liu, Q.; Sun, J.; Chen, G.; Pan, F. Structural Understanding for High-Voltage Stabilization of Lithium Cobalt Oxide. Adv. Mater. 2024, 36, 2307404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, H.; Piper, L.F.J.; Whittingham, M.S.; Zhou, G. Oxygen Loss in Layered Oxide Cathodes for Li-Ion Batteries: Mechanisms, Effects, and Mitigation. Chem. Rev. 2022, 122, 5641–5681. [Google Scholar] [CrossRef] [PubMed]
- Konar, R.; Maiti, S.; Shpigel, N.; Aurbach, D. Reviewing Failure Mechanisms and Modification Strategies in Stabilizing High-Voltage LiCoO2 Cathodes beyond 4.55V. Energy Storage Mater. 2023, 63, 103001. [Google Scholar] [CrossRef]
- Zhuang, Z.; Wang, J.; Jia, K.; Ji, G.; Ma, J.; Han, Z.; Piao, Z.; Gao, R.; Ji, H.; Zhong, X.; et al. Ultrahigh-Voltage LiCoO2 at 4.7 V by Interface Stabilization and Band Structure Modification. Adv. Mater. 2023, 35, 2212059. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Zhang, Y.; Guo, Y.; Liu, S.; Liu, H.; Wu, H. Flakelike LiCoO2 with Exposed {010} Facets As a Stable Cathode Material for Highly Reversible Lithium Storage. ACS Appl. Mater. Interfaces 2016, 8, 2723–2731. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Tan, X.; Ding, W.; Ren, W.; Zhao, Q.; Huang, W.; Liu, J.; Qi, R.; Zhang, Y.; Yang, J.; et al. Promoting Surface Electric Conductivity for High-Rate LiCoO2. Angew. Chem. Int. Ed. 2023, 62, 2218595. [Google Scholar]
- Zhang, J.; Wong, D.; Zhang, Q.; Zhang, N.; Schulz, C.; Bartkowiak, M.; An, K.; Gu, L.; Hu, Z.; Liu, X. Reducing Co/O Band Overlap through Spin State Modulation for Stabilized High Capability of 4.6 V LiCoO2. J. Am. Chem. Soc. 2023, 145, 10208–10219. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, D.; Orikasa, Y.; Mori, S.; Nakatsutsumi, T.; Yamamoto, K.; Koyama, Y.; Minato, T.; Hirano, T.; Tanida, H.; Arai, H.; et al. Effect of an Electrolyte Additive of Vinylene Carbonate on the Electronic Structure at the Surface of a Lithium Cobalt Oxide Electrode under Battery Operating Conditions. J. Phys. Chem. C 2015, 119, 9791–9797. [Google Scholar] [CrossRef]
- Zhang, J.N.; Li, Q.; Ouyang, C.; Yu, X.; Ge, M.; Huang, X.; Hu, E.; Ma, C.; Li, S.; Xiao, R.; et al. Trace Doping of Multiple Elements Enables Stable Battery Cycling of LiCoO2 at 4.6 V. Nat. Energy 2019, 4, 594–603. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Xue, Z.C.; Yang, L.; Wang, J.; Meng, F.; Li, Q.; Pan, H.; Zhang, J.N.; Jiang, Z.; et al. An In Situ Formed Surface Coating Layer Enabling LiCoO2 with Stable 4.6 V High-Voltage Cycle Performances. Adv. Energy Mater. 2020, 10, 2001413. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, X.; Li, X.; Liu, Q.; Liu, Z.; Huang, Y.; Gao, Y.; Hu, Z.; Chen, J.M.; Yang, Y.; et al. Quenching-Etched Surface Spinel to Passivate Layered Cathode Materials from Structural Degradation at High Potentials. Chem. Mater. 2023, 35, 6692–6701. [Google Scholar] [CrossRef]
- Zhou, H.; Izumi, J.; Asano, S.; Ito, K.; Watanabe, K.; Suzuki, K.; Nemoto, F.; Yamada, N.L.; Aso, K.; Oshima, Y.; et al. Fast Lithium Intercalation Mechanism on Surface-Modified Cathodes for Lithium-Ion Batteries. Adv. Energy Mater. 2023, 13, 2302402. [Google Scholar] [CrossRef]
- Wu, R.; Cao, T.; Liu, H.; Cheng, X.; Liu, X.; Zhang, Y. Ultralong Lifespan for High-Voltage LiCoO2 Enabled by in Situ Reconstruction of an Atomic Layer Deposition Coating Layer. ACS Appl. Mater. Interfaces 2022, 14, 25524–25533. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Ye, B.; Cai, M.; Bai, Y.; Xie, M.; Sun, X.; Lv, Z.; Huang, F. Superwettable High-Voltage LiCoO2 for Low-Temperature Lithium Ion Batteries. ACS Energy Lett. 2023, 8, 881–888. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, X.; Chen, H.; Wu, F.; Mai, Y.; Li, S.; Gu, Y.; Li, J.; Zhou, A. Simultaneously Constructing a TiO2-LiF Composite Coating Enhancing the Cycling Stability of LiCoO2 at 4.6 V High Voltage. ACS Sustain. Chem. Eng. 2022, 10, 8151–8161. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, S.; Niu, H.; Wang, Z. Understanding the Role of TiO2 Coating for Stabilizing 4.6V High-Voltage LiCoO2 Cathode Materials. Electrochim. Acta 2024, 478, 143862. [Google Scholar] [CrossRef]
- Zhou, A.; Lu, Y.; Wang, Q.; Xu, J.; Wang, W.; Dai, X.; Li, J. Sputtering TiO2 on LiCoO2 Composite Electrodes as a Simple and Effective Coating to Enhance High-Voltage Cathode Performance. J. Power Sources 2017, 346, 24–30. [Google Scholar] [CrossRef]
- Cho, Y.; Eom, J.; Cho, J. High Performance LiCoO2 Cathode Materials at 60 °C for Lithium Secondary Batteries Prepared by the Facile Nanoscale Dry-Coating Method. J. Electrochem. Soc. 2010, 157, A617. [Google Scholar] [CrossRef]
- Moon, S.H.; Kim, M.C.; Kim, E.S.; Shin, Y.K.; Lee, J.E.; Choi, S.; Park, K.W. TiO2-Coated LiCoO2 Electrodes Fabricated by a Sputtering Deposition Method for Lithium-Ion Batteries with Enhanced Electrochemical Performance. RSC Adv. 2019, 9, 7903–7907. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, W.; Yi, H.; Chen, Z.; Ji, H.; Jun, Q.; Ding, W.; Li, Z.; Shang, M.; Fang, J.; et al. One-Step Sintering Synthesis Achieving Multiple Structure Modulations for High-Voltage LiCoO2. Adv. Funct. Mater. 2023, 33, 2302622. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, Y.; Fu, H.; Ou, M.; Hu, C.; Yu, S.; Hu, Z.; Chen, C.T.; Jiang, G.; Gu, H.; et al. Mg-Pillared LiCoO2: Towards Stable Cycling at 4.6 V. Angew. Chem. Int. Ed. 2021, 60, 4682–4688. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Zhang, S.; Dai, A.; Li, T.; Mei, Y.; Ni, L.; Gao, X.; Deng, W.; Yu, L.; et al. Structure/Interface Coupling Effect for High-Voltage LiCoO2 Cathodes. Adv. Mater. 2022, 34, 2204845. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, J.; Wang, X.; Lin, C.; Zhao, X.S. Hollow Rutile Cuboid Arrays Grown on Carbon Fiber Cloth as a Flexible Electrode for Sodium-Ion Batteries. Adv. Funct. Mater. 2020, 30, 2002629. [Google Scholar] [CrossRef]
- Jia, R.; Zhang, R.; Yu, L.; Kong, X.; Bao, S.; Tu, M.; Liu, X.; Xu, B. Engineering a Hierarchical Carbon Supported Magnetite Nanoparticles Composite from Metal Organic Framework and Graphene Oxide for Lithium-Ion Storage. J. Colloid Interface Sci. 2023, 630, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Ting-Kuo Fey, G.; Lu, C.Z.; Prem Kumar, T.; Chang, Y.C. TiO2 Coating for Long-Cycling LiCoO2: A Comparison of Coating Procedures. Surf. Coat. Technol. 2005, 199, 22–31. [Google Scholar] [CrossRef]
- Su, L.; Jha, S.K.; Phuah, X.L.; Xu, J.; Nakamura, N.; Wang, H.; Okasinski, J.S.; Reeja-Jayan, B. Engineering Lithium-Ion Battery Cathodes for High-Voltage Applications Using Electromagnetic Excitation. J. Mater. Sci. 2020, 55, 12177–12190. [Google Scholar] [CrossRef]
- Cheng, H.M.; Wang, F.M.; Chu, J.P.; Santhanam, R.; Rick, J.; Lo, S.C. Enhanced Cycleabity in Lithium Ion Batteries: Resulting from Atomic Layer Depostion of Al2O3 or TiO2 on LiCoO2 Electrodes. J. Phys. Chem. C 2012, 116, 7629–7637. [Google Scholar] [CrossRef]
- Jayasree, S.S.; Nair, S.; Santhanagopalan, D. Ultrathin TiO2 Coating on LiCoO2 for Improved Electrochemical Performance as Li–Ion Battery Cathode. ChemistrySelect 2018, 3, 2763–2766. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Zheng, K.; Wang, B.; Wang, Z.; Zhang, C.; Long, X. Positional Thiophene Isomerization: A Geometric Strategy for Precisely Regulating the Electronic State of Covalent Organic Frameworks to Boost Oxygen Reduction. Angew. Chem. Int. Ed. 2024, 63, 2320037. [Google Scholar]
- Shin, B.H.; Kim, S.; Park, J.; Ok, J.W.; Kim, D.I.; Kim, D.; Yoon, J.H. Effect of Secondary Phase on Electroless Ni Plating Behaviour of Super Duplex Stainless Steel SAF2507 for Advanced Li-Ion Battery Case. Materials 2024, 17, 1441. [Google Scholar] [CrossRef]
- Xiao, Z.; Gao, L.; Li, S. Engineering Heterostructured Fe-Co-P Arrays for Robust Sodium Storage. Materials 2024, 17, 1616. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, C.; Yan, P.; Jiao, T.; Hao, J.; Jiang, Y.; Ren, F.; Zhang, W.; Zheng, J.; Cheng, Y.; et al. Pushing Lithium Cobalt Oxides to 4.7 V by Lattice-Matched Interfacial Engineering. Adv. Energy Mater. 2022, 12, 2200197. [Google Scholar] [CrossRef]
- Li, J.; Lin, C.; Weng, M.; Qiu, Y.; Chen, P.; Yang, K.; Huang, W.; Hong, Y.; Li, J.; Zhang, M.; et al. Structural Origin of the High-Voltage Instability of Lithium Cobalt Oxide. Nat. Nanotechnol. 2021, 16, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wang, Y.; Qin, M.; Sun, L.; Peng, C.; Li, Y.; Feng, W. Epitaxial Growth of a Single Hexagonal Layered α-LiAlO2 Coating on a High-Voltage LiCoO2 Cathode Material for Enhanced Stability. J. Mater. Chem. A 2023, 11, 10297–10308. [Google Scholar] [CrossRef]
- Wang, P.; Meng, Y.; Wang, Y.; Chen, L.; Zhang, Z.; Pu, W.; Li, J.; Yang, C.; Xiao, D. Oxygen Framework Reconstruction by LiAlH4 Treatment Enabling Stable Cycling of High-Voltage LiCoO2. Energy Storage Mater. 2022, 44, 487–496. [Google Scholar] [CrossRef]
- Li, Y.; Zan, M.; Chen, P.; Huang, Y.; Xu, X.; Zhang, C.; Cai, Z.; Yu, X.; Li, H. Facile Solid-State Synthesis to In Situ Generate a Composite Coating Layer Composed of Spinel-Structural Compounds and Li3PO4 for Stable Cycling of LiCoO2 at 4.6 V. ACS Appl. Mater. Interfaces 2023, 15, 51262–51273. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Jin, X.; Li, Z.; Li, F.; Xu, B.; Wang, C. Ultrathin Titanium Dioxide Coating Enables High-Rate and Long-Life Lithium Cobalt Oxide. Materials 2024, 17, 3036. https://doi.org/10.3390/ma17123036
Gao L, Jin X, Li Z, Li F, Xu B, Wang C. Ultrathin Titanium Dioxide Coating Enables High-Rate and Long-Life Lithium Cobalt Oxide. Materials. 2024; 17(12):3036. https://doi.org/10.3390/ma17123036
Chicago/Turabian StyleGao, Liu, Xin Jin, Zijin Li, Fujie Li, Binghui Xu, and Chao Wang. 2024. "Ultrathin Titanium Dioxide Coating Enables High-Rate and Long-Life Lithium Cobalt Oxide" Materials 17, no. 12: 3036. https://doi.org/10.3390/ma17123036
APA StyleGao, L., Jin, X., Li, Z., Li, F., Xu, B., & Wang, C. (2024). Ultrathin Titanium Dioxide Coating Enables High-Rate and Long-Life Lithium Cobalt Oxide. Materials, 17(12), 3036. https://doi.org/10.3390/ma17123036