Electrical Resistivity Measurements of Surface-Coated Copper Foils
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, F.; Li, Z.; Shenoy, G.J.; Li, L.; Liu, H. Enhanced Room-Temperature Corrosion of Copper in the Presence of Graphene. ACS Nano 2013, 7, 6939–6947. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.Z.; Zhang, Z.B.; Shi, W.J.; Li, Y.W.; Xue, C.W.; Hu, Y.X.; Ding, M.C.; Zhang, Z.Q.; Liu, Z.; Fu, Y.; et al. Enhanced copper anticorrosion from Janus-doped bilayer graphene. Nat. Commun. 2023, 14, 7447. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Wang, K.; Mouele, E.S.M.; Parau, A.C.; Vladescu, A.; Liang, X.; Braic, V.; Petrik, L.F.; Braic, M. Effects of Film Thickness of ALD-Deposited Al2O3, ZrO2 and HfO2 Nano-Layers on the Corrosion Resistance of Ti(N,O)-Coated Stainless Steel. Materials 2023, 16, 2007. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, H.; Guo, P.; Li, X.; Yang, W.; Ma, G.; Nishimura, K.; Ke, P.; Wang, A. Enhanced Long-Term Corrosion Resistance of 316L Stainless Steel by Multilayer Amorphous Carbon Coatings. Materials 2024, 17, 2129. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Jo, M.; Lim, H.; Yoo, M.S.; Lee, E.; Nguyen, N.N.; Han, S.Y.; Cho, K. Toward near-bulk resistivity of Cu for next-generation nano-interconnects: Graphene-coated Cu. Carbon 2019, 149, 656–663. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, M.J.; Seong, H.G.; Jung, J.Y.; Baeck, S.H.; Shim, S.E. Roles of silica-coated layer on graphite for thermal conductivity, heat dissipation, thermal stability, and electrical resistivity of polymer composites. Polymer 2018, 148, 295–302. [Google Scholar] [CrossRef]
- Fan, W.; Lei, J.; Dong, Y.; Xue, Q. Damage detection of CFRP laminate structure based on four-probe method. Chin. J. Sci. Instrum. 2017, 38, 961–968. [Google Scholar]
- Kovalovs, A.; Rucevskis, S.; Kulakov, V.; Wesołowski, M. Damage Detection in Carbon Fibre Reinforced Composites Using Electric Resistance Change Method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 102014. [Google Scholar] [CrossRef]
- Cao, M.; Xiong, D.B.; Yang, L.; Li, S.; Xie, Y.; Guo, Q.; Li, Z.; Adams, H.; Gu, J.; Fan, T.; et al. Ultrahigh Electrical Conductivity of Graphene Embedded in Metals. Adv. Funct. Mater. 2019, 29, 1806792. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, B.; Ni, J.; Song, J.; Huang, Y.; Yao, S.; Liu, Y.; Fan, T. Enhanced electrical conductivity of copper by nitrogen-doped graphene. Scr. Mater. 2024, 239, 115797. [Google Scholar] [CrossRef]
- Mehta, R.; Chugh, S.; Chen, Z. Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires. Nano Lett. 2015, 15, 2024–2030. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, D.; Lai, C.; Tian, G. Quantitative Approach for Thickness and Conductivity Measurement of Monolayer Coating by Dual-Frequency Eddy Current Technique. IEEE Trans. Instrum. Meas. 2017, 66, 1874–1882. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Z.; Xie, F.; Sun, B. Assessment of the Properties of AISI 410 Martensitic Stainless Steel by an Eddy Current Method. Materials 2019, 12, 1290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ju, Y.; Hosoi, A.; Fujimoto, A. Microwave Atomic Force Microscopy: Quantitative Measurement and Characterization of Electrical Properties on the Nanometer Scale. Appl. Phys. Express 2012, 5, 016602. [Google Scholar] [CrossRef]
- Moulder, J.C.; Uzal, E.; Rose, J.H. Thickness and conductivity of metallic layers from eddy current measurements. Rev. Sci. Instrum. 1992, 63, 3455–3465. [Google Scholar] [CrossRef]
- Cheng, J.; Ji, H.; Qiu, J.; Takagi, T.; Uchimoto, T.; Hu, N. Role of interlaminar interface on bulk conductivity and electrical anisotropy of CFRP laminates measured by eddy current method. NDT E Int. 2014, 68, 1–12. [Google Scholar] [CrossRef]
- Mackenzie, D.M.A.; Whelan, P.R.; Bøggild, P.; Jepsen, P.U.; Redo-Sanchez, A.; Etayo, D.; Fabricius, N.; Petersen, D.H. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. Opt. Express 2018, 26, 9220–9229. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Xu, W.; Wen, H.; Zhang, J.; Zhang, H.; Li, H.; Peeters, F.M.; Chen, Q. Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy. Front. Phys. 2023, 18, 53303. [Google Scholar] [CrossRef]
- Li, T.; Zhou, J.; Zheng, Y.; Zhu, Z.; Zhou, L.; Rao, X.; Wang, J. Temperature Dependent Sheet Conductivity of MoS2 Measured by Terahertz Time-Domain Spectroscopy. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar]
- Chakraborty, D.; Walden, D.; Cheng, J.; Wallace, J.; Niherysh, K.A.; Felsharuk, A.V.; Erts, D.; Komissarov, I.; Sobolewski, R. Terahertz Time-Domain Spectroscopy for Probing DC Conductivity of Single-Layer Graphene. In Proceedings of the 2023 IEEE Western New York Image and Signal Processing Workshop (WNYISPW), Rochester, NY, USA, 3 November 2023; pp. 1–4. [Google Scholar]
- Kim, N.; Jung, D.; Kim, Y.; Kim, S.; Han, G.H.; Bahk, Y.M. Optical conductivity measurement of chemically-doped graphene via terahertz time-domain spectroscopy. In Proceedings of the 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Delft, The Netherlands, 28 August 2022–2 September 2022; p. 1. [Google Scholar]
- Cafe, A.I.; De Los Reyes, A.; Lopez, L.; Husay, H.A.; Faustino, M.A.; Mag-usara, V.K.; Tani, M.; Salvador, A.; Somintac, A.; Estacio, E. Non-contact detection of a naturally formed oxide layer on copper metal surface using terahertz time-domain spectroscopy. Curr. Appl. Phys. 2023, 50, 61–68. [Google Scholar] [CrossRef]
- He, K.; Li, Y.; Chen, X.; Wang, J.; Zhang, Q. Influence of finite size probes on the measurement of electrical resistivity using the four-probe technique. J. Semicond. 2014, 35, 082003. [Google Scholar] [CrossRef]
- Lee, K.S.; Phiri, I.; Kim, S.H.; Oh, K.; Ko, J.M. Preparation and Electrical Properties of Silicone Composite Films Based on Silver Nanoparticle Decorated Multi-Walled Carbon Nanotubes. Materials 2021, 14, 948. [Google Scholar] [CrossRef] [PubMed]
- Dahal, A.; Batzill, M. Graphene-nickel interfaces: A review. Nanoscale 2014, 6, 2548–2562. [Google Scholar] [CrossRef] [PubMed]
- Kjeldby, S.B.; Evenstad, O.M.; Cooil, S.P.; Wells, J.W. Probing dimensionality using a simplified 4-probe method. J. Phys. Condens. Matter 2017, 29, 394008. [Google Scholar] [CrossRef] [PubMed]
- Lugansky, L.B.; Tsebro, V.I. Four-probe methods for measuring the resistivity of samples in the form of rectangular parallelepipeds. Instrum. Exp. Tech. 2015, 58, 118–129. [Google Scholar] [CrossRef]
- Lherbier, A.; Blase, X.; Niquet, Y.-M.; Triozon, F.; Roche, S. Charge Transport in Chemically Doped 2D Graphene. Phys. Rev. Lett. 2008, 101, 036808. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.; Adam, S.; Chen, J.H.; Williams, E.D.; Das Sarma, S.; Fuhrer, M.S. Tuning the Effective Fine Structure Constant in Graphene: Opposing Effects of Dielectric Screening on Short- and Long-Range Potential Scattering. Phys. Rev. Lett. 2008, 101, 146805. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Qaisi, R.; Liu, Z.; Yu, Q.; Hussain, M.M. Low-Voltage Back-Gated Atmospheric Pressure Chemical Vapor Deposition Based Graphene-Striped Channel Transistor with High-κ Dielectric Showing Room-Temperature Mobility > 11,000 cm2//V·s. ACS Nano 2013, 7, 5818–5823. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, J.; Wen, T.; Yang, Q.; Feng, Z.; Tan, W.; Li, X.; Wen, Q.; Zhang, H. Flexible terahertz modulators based on graphene FET with organichigh-k dielectric layer. Mater. Res. Express 2018, 5, 115607. [Google Scholar] [CrossRef]
- Adam, S.; Hwang, E.H.; Galitski, V.M.; Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl. Acad. Sci. USA 2007, 104, 18392–18397. [Google Scholar] [CrossRef]
- Du, Y.; Kang, W.; Zheng, R. Variations of the electrical conductivity and the Fermi velocity of epitaxial graphene with temperature. Acta Phys. Sin. 2017, 66, 014701. [Google Scholar]
- Newaz, A.K.M.; Puzyrev, Y.S.; Wang, B.; Pantelides, S.T.; Bolotin, K.I. Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment. Nat. Commun. 2012, 3, 734. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Xia, J.; Ferry, D.K.; Tao, N. Dielectric Screening Enhanced Performance in Graphene FET. Nano Lett. 2009, 9, 2571–2574. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Chen, S.; Cai, W.; Zhu, Y.; Zhu, C.; Ruoff, R.S. Controlling the electrical transport properties of graphene by in situ metal deposition. Appl. Phys. Lett. 2010, 97, 053107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, J.; Yan, Z.; Liu, Y.; Wang, J. Electrical Resistivity Measurements of Surface-Coated Copper Foils. Materials 2024, 17, 2951. https://doi.org/10.3390/ma17122951
Ni J, Yan Z, Liu Y, Wang J. Electrical Resistivity Measurements of Surface-Coated Copper Foils. Materials. 2024; 17(12):2951. https://doi.org/10.3390/ma17122951
Chicago/Turabian StyleNi, Jiamiao, Zhuoxin Yan, Yue Liu, and Jian Wang. 2024. "Electrical Resistivity Measurements of Surface-Coated Copper Foils" Materials 17, no. 12: 2951. https://doi.org/10.3390/ma17122951
APA StyleNi, J., Yan, Z., Liu, Y., & Wang, J. (2024). Electrical Resistivity Measurements of Surface-Coated Copper Foils. Materials, 17(12), 2951. https://doi.org/10.3390/ma17122951