(Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of (Ca0.25La0.5Dy0.25)CrO3 Ceramic Fibers
2.3. Preparation of Ceramic Fiber@Biomass-Derived Carbon Composite Aerogel
2.4. Characterizations
2.5. Solar-Driven Interfacial Evaporation Test Process
2.6. Calculation of Light Absorption Rate and Photothermal Conversion Efficiency
3. Results and Discussion
3.1. Preparation and Characterization of Ceramic Fiber@Biomass-Derived Carbon Composite Aerogels
3.2. Solar Evaporation Capabilities of Ceramic Fiber@Biomass-Derived Carbon Composite Aerogels
3.3. Evaporator Stability Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cooley, S.W.; Ryan, J.C.; Smith, L.C. Human alteration of global surface water storage variability. Nature 2021, 591, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Myers, N. Tapping into Water Tables; Nature Publishing Group UK London: London, UK, 1993. [Google Scholar]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Eltawil, M.A.; Alamri, A.M.; Azam, M.M. Design a novel air to water pressure amplifier powered by PV system for reverse osmosis desalination. Renew. Sustain. Energy Rev. 2022, 160, 112295. [Google Scholar] [CrossRef]
- Li, L.; Chen, G.; Shao, Z.; Huang, H. Progress on smart integrated systems of seawater purification and electrolysis. Energy Environ. Sci. 2023, 16, 4994–5002. [Google Scholar] [CrossRef]
- Ding, T.; Zhou, Y.; Ong, W.L.; Ho, G.W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 2021, 42, 178–191. [Google Scholar] [CrossRef]
- Ali, N.; Abbas, S.; Cao, Y.; Fazal, H.; Zhu, J.; Lai, C.W.; Zai, J.; Qian, X. Low cost, robust, environmentally friendly, wood supported 3D-hierarchical Cu3SnS4 for efficient solar powered steam generation. J. Colloid Interface Sci. 2022, 615, 707–715. [Google Scholar] [CrossRef]
- Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041. [Google Scholar] [CrossRef]
- Brongersma, M.L.; Halas, N.J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, S.; Liu, Q.; Yu, Z.; Cui, Y.; Tang, B.; Zhang, Q.; Wang, J. Self-floating solar evaporator based on kapok fiber for high-performance solar steamgeneration. Cellulose 2023, 30, 2279–2288. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Jia, X.; Li, Y.; Wang, S.; Song, H. Wood-based solar interface evaporation device with self-desalting and high antibacterial activity for efficient solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 47029–47037. [Google Scholar] [CrossRef]
- Song, W.; Wang, H.; Zhang, Z.; Cao, Y.; Zhang, M.; Zhang, P.; Zhang, Y.; Liu, Z.; Shen, Y.; Huang, W. A scalable and anti-fouling silver-nickel/cellulose paper with synergy photothermal effect for efficient solar distillation. J. Colloid Interface Sci. 2023, 650, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liang, H.Q.; Xu, Z.K.; Wang, Z. Harnessing solar-driven photothermal effect toward the water–energy nexus. Adv. Sci. 2019, 6, 1900883. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Wang, H.; Liu, T.; Zheng, X.; Gao, S.; Lu, J. Recent advances in carbon-based materials for solar-driven interfacial photothermal conversion water evaporation: Assemblies, structures, applications, and prospective. Carbon Energy 2023, 5, e331. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, Y.; Lv, B.; Song, C.; You, Z.; Liu, Y.; Fan, X. Mineral scaling behavior in typical salt-resistant solar interfacial desalination: Edge-preferential crystallization vs. enhanced convection. Chem. Eng. J. 2023, 477, 146899. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Chen, L.; Ji, H.; Yu, H.-Y. Highly efficient carbonization of nanocellulose to biocarbon aerogels with ultrahigh light absorption efficiency and evaporation rate as bifunctional solar/electric driven steam generator for water purification. Sustain. Mater. Technol. 2023, 36, e00649. [Google Scholar] [CrossRef]
- Wu, J.; Yang, X.; Jia, X.; Yang, J.; Miao, X.; Shao, D.; Song, H.; Li, Y. Full biomass-derived multifunctional aerogel for solar-driven interfacial evaporation. Chem. Eng. J. 2023, 471, 144684. [Google Scholar] [CrossRef]
- Ibrahim, I.; Seo, D.H.; McDonagh, A.M.; Shon, H.K.; Tijing, L. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 2021, 500, 114853. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, F.; Lv, T.; Qu, Y.; Zhang, Z.; Yu, C.; Zhao, C.; Xing, G. Ti3C2TX/carbon aerogels derived from winter melon for high-efficiency photothermal conversion. Desalination 2024, 573, 117207. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Z.; Liu, P.; Fu, X.; Wang, J.; Cao, Y.; Tang, R.; Du, X.; Chen, W.; Li, S. Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 2023, 622, 499–506. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, G.; Wu, L.; Chen, Z.; Dai, Z.; Yu, F.; Wang, X. Integrated light adsorption and thermal insulation of Zn doping 1T phase MoS2-based evaporation prototype for continuous freshwater generation. Chem. Eng. J. 2023, 454, 140298. [Google Scholar] [CrossRef]
- Zhao, S.; Wei, H.; Zhang, X.; Wang, F.; Su, Z. Clay-based aerogel combined with CuS for solar-driven interfacial steam generation and desalination. J. Colloid Interface Sci. 2024, 653, 1504–1513. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, X.; Gao, S.; Jiang, L.; Yi, Y. Study of CO2 adsorption on carbon aerogel fibers prepared by electrospinning. J. Environ. Manag. 2024, 349, 119432. [Google Scholar] [CrossRef] [PubMed]
- Karan, A.; Sharma, N.S.; Darder, M.; Su, Y.; Andrabi, S.M.; Shahriar, S.S.; John, J.V.; Luo, Z.; DeCoster, M.A.; Zhang, Y.S. Copper–Cystine Biohybrid-Embedded Nanofiber Aerogels Show Antibacterial and Angiogenic Properties. ACS Omega 2024, 8, 9765–9781. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.F.; Asare, K.; Mantripragada, S.; Charles, V.; Shahbazi, A.; Zhang, L. Meso-Microporous Carbon Nanofibrous Aerogel Electrode Material with Fluorine-Treated Wood Biochar for High-Performance Supercapacitor. Gels 2024, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Karamikamkar, S.; Abidli, A.; Aghababaei Tafreshi, O.; Ghaffari-Mosanenzadeh, S.; Buahom, P.; Naguib, H.E.; Park, C.B. Nanocomposite Aerogel Network Featuring High Surface Area and Superinsulation Properties. Chem. Mater. 2024, 36, 642–656. [Google Scholar] [CrossRef]
- Rahmanian, V.; Ebrahim, M.Z.A.; Razavi, S.; Abdelmigeed, M.; Barbieri, E.; Menegatti, S.; Parsons, G.N.; Li, F.; Pirzada, T.; Khan, S.A. Vapor phase synthesis of metal–organic frameworks on a nanofibrous aerogel creates enhanced functionality. J. Mater. Chem. A 2024, 12, 214–226. [Google Scholar] [CrossRef]
- Liu, X.; Li, L.; Wang, M.; Wang, D.; Yan, H.; Li, K.; Li, Y.; Yang, Y.; You, Y.; Yang, X. In-situ polymerization of PANI nanocone array on PEN nanofibrous membranes for solar-driven interfacial evaporation. Sep. Purif. Technol. 2024, 344, 127109. [Google Scholar] [CrossRef]
- Lu, Y.; Fang, Z.; Lu, C.; Wei, L.; Ni, Y.; Xu, Z.; Tao, S. High thermal radiation of Ca-doped lanthanum chromite. RSC Adv. 2015, 5, 30667–30674. [Google Scholar] [CrossRef]
- Yu, L.; Wang, M.; Hou, H.; Liu, G.; Zhang, X.; Wan, N.; Liu, J.; Qiao, G. Enhanced optical absorption and mechanisms of A/B-sites co-doped LaCrO3-based perovskite coating. Appl. Surf. Sci. 2022, 593, 153289. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, X.; Liu, G.; Yang, J.; Cao, W.; Liu, J.; Qiao, G. High-Performance Reticular Porous Perovskite Coating with Wide-Spectrum Absorption for Photothermal Conversion. Sol. RRL 2021, 5, 2000620. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, F.; Liu, Z.; Chen, H.; Shao, Z.; Zhang, X.; Wang, K.; Xue, L. A novel (La0.2Sm0.2Eu0.2Gd0.2Tm0.2)2Zr2O7 high-entropy ceramic nanofiber with excellent thermal stability. Ceram. Int. 2021, 47, 29379–29385. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, M.; Xue, L.; Wang, K.; Yang, F.; Zhong, J.; Chen, H. A novel (Sm0.2Eu0.2Gd0.2Ho0.2Yb0.2) CrO3 high-entropy ceramic nanofiber as a negative temperature coefficient thermistor. J. Rare Earths, 2023. [Google Scholar]
- Duan, H.; Wang, M.; Zhang, Z.; Zhen, J.; Lv, W. Biomass-derived photothermal carbon aerogel for efficient solar-driven seawater desalination. J. Environ. Chem. Eng. 2023, 11, 109295. [Google Scholar] [CrossRef]
- Zou, F.; Bouvard, J.-L.; Pradille, C.; Budtova, T. Ice-templated additive-free porous starches with tuned morphology and properties. Eur. Polym. J. 2022, 176, 111403. [Google Scholar] [CrossRef]
- Zou, F.; Budtova, T. Tailoring the morphology and properties of starch aerogels and cryogels via starch source and process parameter. Carbohydr. Polym. 2021, 255, 117344. [Google Scholar] [CrossRef] [PubMed]
- Sennakesavan, G.; Mostakhdemin, M.; Dkhar, L.; Seyfoddin, A.; Fatihhi, S. Acrylic acid/acrylamide based hydrogels and its properties-A review. Polym. Degrad. Stab. 2020, 180, 109308. [Google Scholar] [CrossRef]
- Xu, X.; Chang, Q.; Xue, C.; Li, N.; Wang, H.; Yang, J.; Hu, S. A carbonized carbon dot-modified starch aerogel for efficient solar-powered water evaporation. J. Mater. Chem. A 2022, 10, 11712–11720. [Google Scholar] [CrossRef]
- Luo, W.; Shi, C.; Wang, S.; Liu, H.; Zhang, Y.; Song, Y.; Zhao, J.; Zhang, L.; Ling, Z. Carbon coated vermiculite aerogels by quick pyrolysis as cost-effective and scalable solar evaporators. Desalination 2023, 566, 116886. [Google Scholar] [CrossRef]
- Mastai, Y.; Polarz, S.; Antonietti, M. Silica–carbon nanocomposites—A new concept for the design of solar absorbers. Adv. Funct. Mater. 2002, 12, 197–202. [Google Scholar] [CrossRef]
- Bai, B.; Yang, X.; Tian, R.; Ren, W.; Suo, R.; Wang, H. High-efficiency solar steam generation based on blue brick-graphene inverted cone evaporator. Appl. Therm. Eng. 2019, 163, 114379. [Google Scholar] [CrossRef]
- Yin, J.; Tang, L.; Gao, Y.; Fang, Z.; Lu, C.; Xu, Z. Selective ceramic absorber with vertical pore structure for efficient solar evaporation. Sep. Purif. Technol. 2022, 292, 121009. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, R.K.; Sinha, A.; Singh, P. Effect of isovalent ion substitution on electrical and dielectric properties of LaCrO3. J. Alloys Compd. 2013, 576, 154–160. [Google Scholar] [CrossRef]
- Singh, K.D.; Pandit, R.; Kumar, R. Effect of rare earth ions on structural and optical properties of specific perovskite orthochromates; RCrO3 (R= La, Nd, Eu, Gd, Dy, and Y). Solid State Sci. 2018, 85, 70–75. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, L.; Yang, F.; Shao, Z.; Zhang, H.; Zhao, Z.; Wang, K. (La0.2Y0.2Nd0.2Gd0.2Sr0.2)CrO3: A novel conductive porous high-entropy ceramic synthesized by the sol-gel method. J. Alloys Compd. 2021, 863, 158763. [Google Scholar] [CrossRef]
- Sakai, N.; Fjellvâg, H.; Hauback, B.C. Structural, magnetic, and thermal properties of La1−tCatCrO3−δ. J. Solid State Chem. 1996, 121, 202–213. [Google Scholar] [CrossRef]
- Qahtan, A.A.; Husain, S.; Khan, W. The effect of Ni doping on the structural, optical and dielectric properties of nanocrystalline YbCrO3. J. Phys. Chem. Solids 2021, 159, 110280. [Google Scholar] [CrossRef]
- Qiao, L.; Xiao, H.Y.; Heald, S.M.; Bowden, M.E.; Varga, T.; Exarhos, G.J.; Biegalski, M.D.; Ivanov, I.N.; Weber, W.J.; Droubay, T.C. The impact of crystal symmetry on the electronic structure and functional properties of complex lanthanum chromium oxides. J. Mater. Chem. C 2013, 1, 4527–4535. [Google Scholar] [CrossRef]
- Qingsheng, L.; Qing, C.; Jianglin, L. Effect of doping on the structure of LaCrO3 and the properties of mid infrared radiation. Chem. Ind. Eng. Prog. 2017, 36, 2547. [Google Scholar]
- Zarrin, N.; Husain, S.; Gaur, D.D.; Somvanshi, A.; Fatema, M. Dopant incited alterations in structural, morphological, optical, and dielectric properties of Er-doped LaCrO3. J. Mater. Sci. Mater. Electron. 2020, 31, 3466–3478. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Zhang, D.; Wang, S.; Jia, X.; Li, Y.; Shao, D.; Feng, L.; Song, H.; Tang, S. A wood-inspired bimodal solar-driven evaporator for highly efficient and durable purification of high-salinity wastewater. J. Mater. Chem. A 2023, 11, 2349–2359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Xue, L.; Zhang, J.; Zhang, M.; Wang, K.; Huang, M.; Yang, F.; Jiang, Z.; Liang, T. (Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation. Materials 2024, 17, 2205. https://doi.org/10.3390/ma17102205
Zhang W, Xue L, Zhang J, Zhang M, Wang K, Huang M, Yang F, Jiang Z, Liang T. (Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation. Materials. 2024; 17(10):2205. https://doi.org/10.3390/ma17102205
Chicago/Turabian StyleZhang, Wei, Liyan Xue, Jincheng Zhang, Meng Zhang, Kaixian Wang, Minzhong Huang, Fan Yang, Zhengming Jiang, and Tongxiang Liang. 2024. "(Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation" Materials 17, no. 10: 2205. https://doi.org/10.3390/ma17102205
APA StyleZhang, W., Xue, L., Zhang, J., Zhang, M., Wang, K., Huang, M., Yang, F., Jiang, Z., & Liang, T. (2024). (Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation. Materials, 17(10), 2205. https://doi.org/10.3390/ma17102205