(Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of (Ca0.25La0.5Dy0.25)CrO3 Ceramic Fibers
2.3. Preparation of Ceramic Fiber@Biomass-Derived Carbon Composite Aerogel
2.4. Characterizations
2.5. Solar-Driven Interfacial Evaporation Test Process
2.6. Calculation of Light Absorption Rate and Photothermal Conversion Efficiency
3. Results and Discussion
3.1. Preparation and Characterization of Ceramic Fiber@Biomass-Derived Carbon Composite Aerogels
3.2. Solar Evaporation Capabilities of Ceramic Fiber@Biomass-Derived Carbon Composite Aerogels
3.3. Evaporator Stability Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cooley, S.W.; Ryan, J.C.; Smith, L.C. Human alteration of global surface water storage variability. Nature 2021, 591, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Myers, N. Tapping into Water Tables; Nature Publishing Group UK London: London, UK, 1993. [Google Scholar]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Eltawil, M.A.; Alamri, A.M.; Azam, M.M. Design a novel air to water pressure amplifier powered by PV system for reverse osmosis desalination. Renew. Sustain. Energy Rev. 2022, 160, 112295. [Google Scholar] [CrossRef]
- Li, L.; Chen, G.; Shao, Z.; Huang, H. Progress on smart integrated systems of seawater purification and electrolysis. Energy Environ. Sci. 2023, 16, 4994–5002. [Google Scholar] [CrossRef]
- Ding, T.; Zhou, Y.; Ong, W.L.; Ho, G.W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 2021, 42, 178–191. [Google Scholar] [CrossRef]
- Ali, N.; Abbas, S.; Cao, Y.; Fazal, H.; Zhu, J.; Lai, C.W.; Zai, J.; Qian, X. Low cost, robust, environmentally friendly, wood supported 3D-hierarchical Cu3SnS4 for efficient solar powered steam generation. J. Colloid Interface Sci. 2022, 615, 707–715. [Google Scholar] [CrossRef]
- Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041. [Google Scholar] [CrossRef]
- Brongersma, M.L.; Halas, N.J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, S.; Liu, Q.; Yu, Z.; Cui, Y.; Tang, B.; Zhang, Q.; Wang, J. Self-floating solar evaporator based on kapok fiber for high-performance solar steamgeneration. Cellulose 2023, 30, 2279–2288. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Jia, X.; Li, Y.; Wang, S.; Song, H. Wood-based solar interface evaporation device with self-desalting and high antibacterial activity for efficient solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 47029–47037. [Google Scholar] [CrossRef]
- Song, W.; Wang, H.; Zhang, Z.; Cao, Y.; Zhang, M.; Zhang, P.; Zhang, Y.; Liu, Z.; Shen, Y.; Huang, W. A scalable and anti-fouling silver-nickel/cellulose paper with synergy photothermal effect for efficient solar distillation. J. Colloid Interface Sci. 2023, 650, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liang, H.Q.; Xu, Z.K.; Wang, Z. Harnessing solar-driven photothermal effect toward the water–energy nexus. Adv. Sci. 2019, 6, 1900883. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Wang, H.; Liu, T.; Zheng, X.; Gao, S.; Lu, J. Recent advances in carbon-based materials for solar-driven interfacial photothermal conversion water evaporation: Assemblies, structures, applications, and prospective. Carbon Energy 2023, 5, e331. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, Y.; Lv, B.; Song, C.; You, Z.; Liu, Y.; Fan, X. Mineral scaling behavior in typical salt-resistant solar interfacial desalination: Edge-preferential crystallization vs. enhanced convection. Chem. Eng. J. 2023, 477, 146899. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Chen, L.; Ji, H.; Yu, H.-Y. Highly efficient carbonization of nanocellulose to biocarbon aerogels with ultrahigh light absorption efficiency and evaporation rate as bifunctional solar/electric driven steam generator for water purification. Sustain. Mater. Technol. 2023, 36, e00649. [Google Scholar] [CrossRef]
- Wu, J.; Yang, X.; Jia, X.; Yang, J.; Miao, X.; Shao, D.; Song, H.; Li, Y. Full biomass-derived multifunctional aerogel for solar-driven interfacial evaporation. Chem. Eng. J. 2023, 471, 144684. [Google Scholar] [CrossRef]
- Ibrahim, I.; Seo, D.H.; McDonagh, A.M.; Shon, H.K.; Tijing, L. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 2021, 500, 114853. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, F.; Lv, T.; Qu, Y.; Zhang, Z.; Yu, C.; Zhao, C.; Xing, G. Ti3C2TX/carbon aerogels derived from winter melon for high-efficiency photothermal conversion. Desalination 2024, 573, 117207. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Z.; Liu, P.; Fu, X.; Wang, J.; Cao, Y.; Tang, R.; Du, X.; Chen, W.; Li, S. Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 2023, 622, 499–506. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, G.; Wu, L.; Chen, Z.; Dai, Z.; Yu, F.; Wang, X. Integrated light adsorption and thermal insulation of Zn doping 1T phase MoS2-based evaporation prototype for continuous freshwater generation. Chem. Eng. J. 2023, 454, 140298. [Google Scholar] [CrossRef]
- Zhao, S.; Wei, H.; Zhang, X.; Wang, F.; Su, Z. Clay-based aerogel combined with CuS for solar-driven interfacial steam generation and desalination. J. Colloid Interface Sci. 2024, 653, 1504–1513. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, X.; Gao, S.; Jiang, L.; Yi, Y. Study of CO2 adsorption on carbon aerogel fibers prepared by electrospinning. J. Environ. Manag. 2024, 349, 119432. [Google Scholar] [CrossRef] [PubMed]
- Karan, A.; Sharma, N.S.; Darder, M.; Su, Y.; Andrabi, S.M.; Shahriar, S.S.; John, J.V.; Luo, Z.; DeCoster, M.A.; Zhang, Y.S. Copper–Cystine Biohybrid-Embedded Nanofiber Aerogels Show Antibacterial and Angiogenic Properties. ACS Omega 2024, 8, 9765–9781. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.F.; Asare, K.; Mantripragada, S.; Charles, V.; Shahbazi, A.; Zhang, L. Meso-Microporous Carbon Nanofibrous Aerogel Electrode Material with Fluorine-Treated Wood Biochar for High-Performance Supercapacitor. Gels 2024, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Karamikamkar, S.; Abidli, A.; Aghababaei Tafreshi, O.; Ghaffari-Mosanenzadeh, S.; Buahom, P.; Naguib, H.E.; Park, C.B. Nanocomposite Aerogel Network Featuring High Surface Area and Superinsulation Properties. Chem. Mater. 2024, 36, 642–656. [Google Scholar] [CrossRef]
- Rahmanian, V.; Ebrahim, M.Z.A.; Razavi, S.; Abdelmigeed, M.; Barbieri, E.; Menegatti, S.; Parsons, G.N.; Li, F.; Pirzada, T.; Khan, S.A. Vapor phase synthesis of metal–organic frameworks on a nanofibrous aerogel creates enhanced functionality. J. Mater. Chem. A 2024, 12, 214–226. [Google Scholar] [CrossRef]
- Liu, X.; Li, L.; Wang, M.; Wang, D.; Yan, H.; Li, K.; Li, Y.; Yang, Y.; You, Y.; Yang, X. In-situ polymerization of PANI nanocone array on PEN nanofibrous membranes for solar-driven interfacial evaporation. Sep. Purif. Technol. 2024, 344, 127109. [Google Scholar] [CrossRef]
- Lu, Y.; Fang, Z.; Lu, C.; Wei, L.; Ni, Y.; Xu, Z.; Tao, S. High thermal radiation of Ca-doped lanthanum chromite. RSC Adv. 2015, 5, 30667–30674. [Google Scholar] [CrossRef]
- Yu, L.; Wang, M.; Hou, H.; Liu, G.; Zhang, X.; Wan, N.; Liu, J.; Qiao, G. Enhanced optical absorption and mechanisms of A/B-sites co-doped LaCrO3-based perovskite coating. Appl. Surf. Sci. 2022, 593, 153289. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, X.; Liu, G.; Yang, J.; Cao, W.; Liu, J.; Qiao, G. High-Performance Reticular Porous Perovskite Coating with Wide-Spectrum Absorption for Photothermal Conversion. Sol. RRL 2021, 5, 2000620. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, F.; Liu, Z.; Chen, H.; Shao, Z.; Zhang, X.; Wang, K.; Xue, L. A novel (La0.2Sm0.2Eu0.2Gd0.2Tm0.2)2Zr2O7 high-entropy ceramic nanofiber with excellent thermal stability. Ceram. Int. 2021, 47, 29379–29385. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, M.; Xue, L.; Wang, K.; Yang, F.; Zhong, J.; Chen, H. A novel (Sm0.2Eu0.2Gd0.2Ho0.2Yb0.2) CrO3 high-entropy ceramic nanofiber as a negative temperature coefficient thermistor. J. Rare Earths, 2023. [Google Scholar]
- Duan, H.; Wang, M.; Zhang, Z.; Zhen, J.; Lv, W. Biomass-derived photothermal carbon aerogel for efficient solar-driven seawater desalination. J. Environ. Chem. Eng. 2023, 11, 109295. [Google Scholar] [CrossRef]
- Zou, F.; Bouvard, J.-L.; Pradille, C.; Budtova, T. Ice-templated additive-free porous starches with tuned morphology and properties. Eur. Polym. J. 2022, 176, 111403. [Google Scholar] [CrossRef]
- Zou, F.; Budtova, T. Tailoring the morphology and properties of starch aerogels and cryogels via starch source and process parameter. Carbohydr. Polym. 2021, 255, 117344. [Google Scholar] [CrossRef] [PubMed]
- Sennakesavan, G.; Mostakhdemin, M.; Dkhar, L.; Seyfoddin, A.; Fatihhi, S. Acrylic acid/acrylamide based hydrogels and its properties-A review. Polym. Degrad. Stab. 2020, 180, 109308. [Google Scholar] [CrossRef]
- Xu, X.; Chang, Q.; Xue, C.; Li, N.; Wang, H.; Yang, J.; Hu, S. A carbonized carbon dot-modified starch aerogel for efficient solar-powered water evaporation. J. Mater. Chem. A 2022, 10, 11712–11720. [Google Scholar] [CrossRef]
- Luo, W.; Shi, C.; Wang, S.; Liu, H.; Zhang, Y.; Song, Y.; Zhao, J.; Zhang, L.; Ling, Z. Carbon coated vermiculite aerogels by quick pyrolysis as cost-effective and scalable solar evaporators. Desalination 2023, 566, 116886. [Google Scholar] [CrossRef]
- Mastai, Y.; Polarz, S.; Antonietti, M. Silica–carbon nanocomposites—A new concept for the design of solar absorbers. Adv. Funct. Mater. 2002, 12, 197–202. [Google Scholar] [CrossRef]
- Bai, B.; Yang, X.; Tian, R.; Ren, W.; Suo, R.; Wang, H. High-efficiency solar steam generation based on blue brick-graphene inverted cone evaporator. Appl. Therm. Eng. 2019, 163, 114379. [Google Scholar] [CrossRef]
- Yin, J.; Tang, L.; Gao, Y.; Fang, Z.; Lu, C.; Xu, Z. Selective ceramic absorber with vertical pore structure for efficient solar evaporation. Sep. Purif. Technol. 2022, 292, 121009. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, R.K.; Sinha, A.; Singh, P. Effect of isovalent ion substitution on electrical and dielectric properties of LaCrO3. J. Alloys Compd. 2013, 576, 154–160. [Google Scholar] [CrossRef]
- Singh, K.D.; Pandit, R.; Kumar, R. Effect of rare earth ions on structural and optical properties of specific perovskite orthochromates; RCrO3 (R= La, Nd, Eu, Gd, Dy, and Y). Solid State Sci. 2018, 85, 70–75. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, L.; Yang, F.; Shao, Z.; Zhang, H.; Zhao, Z.; Wang, K. (La0.2Y0.2Nd0.2Gd0.2Sr0.2)CrO3: A novel conductive porous high-entropy ceramic synthesized by the sol-gel method. J. Alloys Compd. 2021, 863, 158763. [Google Scholar] [CrossRef]
- Sakai, N.; Fjellvâg, H.; Hauback, B.C. Structural, magnetic, and thermal properties of La1−tCatCrO3−δ. J. Solid State Chem. 1996, 121, 202–213. [Google Scholar] [CrossRef]
- Qahtan, A.A.; Husain, S.; Khan, W. The effect of Ni doping on the structural, optical and dielectric properties of nanocrystalline YbCrO3. J. Phys. Chem. Solids 2021, 159, 110280. [Google Scholar] [CrossRef]
- Qiao, L.; Xiao, H.Y.; Heald, S.M.; Bowden, M.E.; Varga, T.; Exarhos, G.J.; Biegalski, M.D.; Ivanov, I.N.; Weber, W.J.; Droubay, T.C. The impact of crystal symmetry on the electronic structure and functional properties of complex lanthanum chromium oxides. J. Mater. Chem. C 2013, 1, 4527–4535. [Google Scholar] [CrossRef]
- Qingsheng, L.; Qing, C.; Jianglin, L. Effect of doping on the structure of LaCrO3 and the properties of mid infrared radiation. Chem. Ind. Eng. Prog. 2017, 36, 2547. [Google Scholar]
- Zarrin, N.; Husain, S.; Gaur, D.D.; Somvanshi, A.; Fatema, M. Dopant incited alterations in structural, morphological, optical, and dielectric properties of Er-doped LaCrO3. J. Mater. Sci. Mater. Electron. 2020, 31, 3466–3478. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Zhang, D.; Wang, S.; Jia, X.; Li, Y.; Shao, D.; Feng, L.; Song, H.; Tang, S. A wood-inspired bimodal solar-driven evaporator for highly efficient and durable purification of high-salinity wastewater. J. Mater. Chem. A 2023, 11, 2349–2359. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Xue, L.; Zhang, J.; Zhang, M.; Wang, K.; Huang, M.; Yang, F.; Jiang, Z.; Liang, T. (Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation. Materials 2024, 17, 2205. https://doi.org/10.3390/ma17102205
Zhang W, Xue L, Zhang J, Zhang M, Wang K, Huang M, Yang F, Jiang Z, Liang T. (Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation. Materials. 2024; 17(10):2205. https://doi.org/10.3390/ma17102205
Chicago/Turabian StyleZhang, Wei, Liyan Xue, Jincheng Zhang, Meng Zhang, Kaixian Wang, Minzhong Huang, Fan Yang, Zhengming Jiang, and Tongxiang Liang. 2024. "(Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation" Materials 17, no. 10: 2205. https://doi.org/10.3390/ma17102205
APA StyleZhang, W., Xue, L., Zhang, J., Zhang, M., Wang, K., Huang, M., Yang, F., Jiang, Z., & Liang, T. (2024). (Ca0.25La0.5Dy0.25)CrO3 Ceramic Fiber@Biomass-Derived Carbon Aerogel with Enhanced Solute Transport Channels for Highly Efficient Solar Interface Evaporation. Materials, 17(10), 2205. https://doi.org/10.3390/ma17102205