Performance Assessment of Carbon Dioxide Sequestration in Cement Composites with a Granulation Technique
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Materials
2.2. Experiment
2.2.1. CO2 Sequestration Monitoring by ppm (CO2-ppm)
2.2.2. X-ray Diffraction (XRD)
2.2.3. Fourier Transform Infra-Red (FTIR)
2.2.4. Mercury Intrusion Porosimetry (MIP)
2.2.5. Thermogravimetric Analysis (TGA)
3. Results and Discussion
3.1. CO2-ppm Results with MIP
3.2. XRD Resutls
3.3. FTIR Results
3.4. TGA Results
3.5. Summary Discussion
4. Conclusions
- The CO2-ppm results were contrary to the expectation that the F g and S g groups would show better performance than the C g group. This is because the BFS and FA caused the filler effect, and this phenomenon blocked the path of CO2 flow as result. Therefore, CCHG could not react with CO2 enough because of the BFS and FA. In short, BFS and FA had a negative effect on the CO2 sequestration performance.
- According to the XRD, FTIR, and TGA results, one other negative factor was found: the pozzolan effect caused the consumption of CH. As is well known, the pozzolan reaction consumes CH to make CSH. However, CH is a key component in reacting with CO2 in the cement matrix, therefore, the amount of CH was decreased by the pozzolan reaction during the curing period. The CH consumption was found in the results of XRD, FTIR, and TGA. Due to this phenomenon, combined with the filler effect, the sequestration performance was significantly decreased.
- As a comprehensive result, CO2 sequestration depends on the porosity and the amount of CH in the cement matrix. For this reason, the matrix did not have enough strength, therefore, the concept of this study is suitable for substructures are not burdened by external loads, such as the median strip on roads.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costa, F.N.; Ribeiro, D.V. Reduction in CO2 Emissions during Production of Cement, with Partial Replacement of Traditional Raw Materials by Civil Construction Waste (CCW). J. Clean. Prod. 2020, 276, 123302. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Andrade, C.; Mora, P.; Zaragoza, A. Carbon Dioxide Uptake by Mortars and Concretes Made with Portuguese Cements. Appl. Sci. 2020, 10, 646. [Google Scholar] [CrossRef]
- Nie, S.; Zhou, J.; Yang, F.; Lan, M.; Li, J.; Zhang, Z.; Chen, Z.; Xu, M.; Li, H.; Sanjayan, J.G. Analysis of Theoretical Carbon Dioxide Emissions from Cement Production: Methodology and Application. J. Clean. Prod. 2022, 334, 130270. [Google Scholar] [CrossRef]
- Skocek, J.; Zajac, M.; Ben Haha, M. Carbon Capture and Utilization by Mineralization of Cement Pastes Derived from Recycled Concrete. Sci. Rep. 2020, 10, 5614. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Gierke, J.S.; Sutter, L.L.; Kawatra, S.K.; Eisele, T.C. Mineral Carbonation for Carbon Sequestration in Cement Kiln Dust from Waste Piles. J. Hazard. Mater. 2009, 168, 31–37. [Google Scholar] [CrossRef]
- Bobicki, E.R.; Liu, Q.; Xu, Z.; Zeng, H. Carbon Capture and Storage Using Alkaline Industrial Wastes. Prog. Energy Combust. Sci. 2012, 38, 302–320. [Google Scholar] [CrossRef]
- Eloneva, S.; Teir, S.; Salminen, J.; Fogelholm, C.J.; Zevenhoven, R. Fixation of CO2 by Carbonating Calcium Derived from Blast Furnace Slag. Energy 2008, 33, 1461–1467. [Google Scholar] [CrossRef]
- Roy, P.; Mohanty, A.K.; Wagner, A.; Sharif, S.; Khalil, H.; Misra, M. Impacts of COVID-19 Outbreak on the Municipal Solid Waste Management: Now and beyond the Pandemic. ACS Environ. Au 2021, 1, 32–45. [Google Scholar] [CrossRef]
- Woo, B.H.; Jeon, I.K.; Yoo, D.H.; Kim, S.S.; Lee, J.B.; Kim, H.G. Utilization of Municipal Solid Waste Incineration Bottom Ash as Fine Aggregate of Cement Mortars. Sustainability 2021, 13, 8832. [Google Scholar] [CrossRef]
- Rendek, E.; Ducom, G.; Germain, P. Carbon Dioxide Sequestration in Municipal Solid Waste Incinerator (MSWI) Bottom Ash. J. Hazard. Mater. 2006, 128, 73–79. [Google Scholar] [CrossRef]
- Luo, W.; Li, B.; Xu, M.; Pang, C.; Lester, E.; Xu, L.; Kow, K.W. In-Situ Release and Sequestration of CO2 in Cement Composites Using LTA Zeolites. Sci. Total Environ. 2023, 872, 162133. [Google Scholar] [CrossRef]
- Gupta, S.; Kashani, A.; Mahmood, A.H. Carbon Sequestration in Engineered Lightweight Foamed Mortar–Effect on Rheology, Mechanical and Durability Properties. Constr. Build. Mater. 2022, 322, 126383. [Google Scholar] [CrossRef]
- Kang, S.; Kang, H.; Lee, B. Effects of Adding Neutralized Red Mud on the Hydration Properties of Cement Paste. Materials 2020, 13, 4107. [Google Scholar] [CrossRef]
- Zhang, S.; Ghouleh, Z.; He, Z.; Hu, L.; Shao, Y. Use of Municipal Solid Waste Incineration Bottom Ash as a Supplementary Cementitious Material in Dry-Cast Concrete. Constr. Build. Mater. 2021, 266, 120890. [Google Scholar] [CrossRef]
- ASTM C150; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2017.
- Aodkeng, S.; Sinthupinyo, S.; Chamnankid, B.; Hanpongpun, W.; Chaipanich, A. Effect of Carbon Nanotubes/Clay Hybrid Composite on Mechanical Properties, Hydration Heat and Thermal Analysis of Cement-Based Materials. Constr. Build. Mater. 2022, 320, 126212. [Google Scholar] [CrossRef]
- Pei, J.; Sharma, R.; Jang, J.G. Use of Carbonated Portland Cement Clinkers as a Reactive or Non-Reactive Aggregate for the Production of Cement Mortar. Constr. Build. Mater. 2022, 319, 126070. [Google Scholar] [CrossRef]
- Wang, F.; Li, K.; Liu, Y. Optimal Water-Cement Ratio of Cement-Stabilized Soil. Constr. Build. Mater. 2022, 320, 126211. [Google Scholar] [CrossRef]
- ASTM C33; Standard Specifications for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2003.
- You, X.; Hu, X.; He, P.; Liu, J.; Shi, C. A Review on the Modelling of Carbonation of Hardened and Fresh Cement-Based Materials. Cem. Concr. Compos. 2022, 125, 104315. [Google Scholar] [CrossRef]
- Aquilina, A.; Borg, R.P.; Buhagiar, J. The Application of Natural Organic Additives in Concrete: Opuntia Ficus-Indica. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Valletta, Malta, 10 April 2018; Institute of Physics Publishing: Bristol, UK, 2018; Volume 442. [Google Scholar]
- Kamorny, D.A.; Safonov, A.V.; Boldyrev, K.A.; Abramova, E.S.; Tyupina, E.A.; Gorbunova, O.A. Modification of the Cement Matrix with Organic Additives for Stabilizing Pertechnetate Ions. J. Nucl. Mater. 2021, 557, 153295. [Google Scholar] [CrossRef]
- Patel, G.K.; Deo, S.V. Effect of Natural Organic Materials as Admixture on Properties of Concrete. Indian. J. Sci. Technol. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Humad, A.M.; Kothari, A.; Provis, J.L.; Cwirzen, A. The Effect of Blast Furnace Slag/Fly Ash Ratio on Setting, Strength, and Shrinkage of Alkali-Activated Pastes and Concretes. Front. Mater. 2019, 6, 9. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Camões, A.; Branco, F.G. Synergetic Effect of Biomass Fly Ash on Improvement of High-Volume Coal Fly Ash Concrete Properties. Constr. Build. Mater. 2022, 314, 125680. [Google Scholar] [CrossRef]
- Bui, P.T.; Ogawa, Y.; Kawai, K. Long-Term Pozzolanic Reaction of Fly Ash in Hardened Cement-Based Paste Internally Activated by Natural Injection of Saturated Ca(OH)2 Solution. Mater. Struct. Mater. Et. Constr. 2018, 51, 144. [Google Scholar] [CrossRef]
- Ustabaş, İ.; Kaya, A. Comparing the Pozzolanic Activity Properties of Obsidian to Those of Fly Ash and Blast Furnace Slag. Constr. Build. Mater. 2018, 164, 297–307. [Google Scholar] [CrossRef]
- Liu, X.; Yu, R.J. Blast Furnace Slag Foundation Packing Grading and Compaction Characteristics Analysis. Appl. Mech. Mater. 2013, 368, 855–859. [Google Scholar] [CrossRef]
- Jeon, I.K.; Kim, H.G.; Jakhrani, S.H.; Ryou, J.S. Evaluation of the Microstructure, Mechanical, and Durability Properties of Alkali-Activated Slag-Based Mortar with Light-Burnt Dolomite Powder. J. Mater. Res. Technol. 2021, 13, 2220–2228. [Google Scholar] [CrossRef]
- Yasipourtehrani, S.; Tian, S.; Strezov, V.; Kan, T.; Evans, T. Development of Robust CaO-Based Sorbents from Blast Furnace Slag for Calcium Looping CO2 Capture. Chem. Eng. J. 2020, 387, 124140. [Google Scholar] [CrossRef]
- Dindi, A.; Quang, D.V.; Vega, L.F.; Nashef, E.; Abu-Zahra, M.R.M. Applications of Fly Ash for CO2 Capture, Utilization, and Storage. J. CO2 Util. 2019, 29, 82–102. [Google Scholar] [CrossRef]
- Hsu, S.; Chi, M.; Huang, R. Effect of Fineness and Replacement Ratio of Ground Fly Ash on Properties of Blended Cement Mortar. Constr. Build. Mater. 2018, 176, 250–258. [Google Scholar] [CrossRef]
- Kim, J.; Na, S.; Hama, Y. Effect of Blast-Furnace Slag Replacement Ratio and Curing Method on Pore Structure Change after Carbonation on Cement Paste. Materials 2020, 13, 4787. [Google Scholar] [CrossRef]
- Katpady, D.N.; Hazehara, H.; Soeda, M.; Kubota, T.; Murakami, S. Durability Assessment of Blended Concrete by Air Permeability. Int. J. Concr. Struct. Mater. 2018, 12, 30. [Google Scholar] [CrossRef]
- Gruyaert, E.; Van Den Heede, P.; De Belie, N. Carbonation of Slag Concrete: Effect of the Cement Replacement Level and Curing on the Carbonation Coefficient-Effect of Carbonation on the Pore Structure. Cem. Concr. Compos. 2013, 35, 39–48. [Google Scholar] [CrossRef]
- Song, K.I.; Song, J.K.; Lee, B.Y.; Yang, K.H. Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar. Adv. Mater. Sci. Eng. 2014, 2014, 326458. [Google Scholar] [CrossRef]
- Vance, K.; Falzone, G.; Pignatelli, I.; Bauchy, M.; Balonis, M.; Sant, G. Direct Carbonation of Ca(OH)2 Using Liquid and Supercritical CO2: Implications for Carbon-Neutral Cementation. Ind. Eng. Chem. Res. 2015, 54, 8908–8918. [Google Scholar] [CrossRef]
- Ashish, D.K.; Verma, S.K. Cementing Efficiency of Flash and Rotary-Calcined Metakaolin in Concrete. J. Mater. Civ. Eng. 2019, 31, 04019307. [Google Scholar] [CrossRef]
- Jeon, I.K.; Qudoos, A.; Woo, B.H.; Yoo, D.H.; Kim, H.G. Effects of Nano-Silica and Reactive Magnesia on the Microstructure and Durability Performance of Underwater Concrete. Powder Technol. 2022, 398, 116976. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tsang, D.C.W.; Guo, B.; Yang, J.; Shen, Z.; Hou, D.; Ok, Y.S.; Poon, C.S. Biochar as Green Additives in Cement-Based Composites with Carbon Dioxide Curing. J. Clean. Prod. 2020, 258, 120678. [Google Scholar] [CrossRef]
- Meena, A.; Parikh, T.; Singh Gupta, S.; Serajuddin, A.T.M. Investigation of Thermal and Viscoelastic Properties of Polymers Relevant to Hot Melt Extrusion-II: Cellulosic Polymers. J. Excip. Food Chem. 2016, 5, 1–10. [Google Scholar]
- Mohammed, A.M.A.; Yunus, N.Z.M.; Hezmi, M.A.; Rashid, A.S.A. Sequestration of Carbon Dioxide Using Ground Granulated Blast Furnaces Slag and Kaolin Mixtures. Glob. Nest J. 2021, 23, 105–111. [Google Scholar] [CrossRef]
- Siriruang, C.; Toochinda, P.; Julnipitawong, P.; Tangtermsirikul, S. CO2 Capture Using Fly Ash from Coal Fired Power Plant and Applications of CO2-Captured Fly Ash as a Mineral Admixture for Concrete. J. Environ. Manag. 2016, 170, 70–78. [Google Scholar] [CrossRef]
- Zhao, H.; Xiao, Q.; Huang, D.; Zhang, S. Influence of Pore Structure on Compressive Strength of Cement Mortar. Sci. World J. 2014, 2014, 247058. [Google Scholar] [CrossRef] [PubMed]
Chemical Composition (%) | |||||
---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Other |
20.8 | 6.3 | 3.2 | 62 | 3.3 | 4.4 |
Physical Properties | |||||
Blaine (cm2/g) | Specific Gravity (ton/m3) | ||||
3200 | 3.15 |
Type | Details of Materials |
---|---|
Granule |
|
Granule binder |
|
Coating material |
|
Solvent |
|
Specimens | Mix Ratio (On the Basis of Cement) | |||||
---|---|---|---|---|---|---|
Water | Cement | Sand | CCHG | Fly Ash | BFS 1 | |
C-G0 | 0.485 | 1 | 2.75 | 0 | 0 | 0 |
F-G0 | 0.1 | 0 | ||||
S-G0 | 0 | 0.1 | ||||
C-G5 | 0.05 | 0 | 0 | |||
F-G5 | 0.1 | 0 | ||||
S-G5 | 0 | 0.1 |
Materials | SiO2 | Al2O3 | Fe2O3 | CaO | LOI |
---|---|---|---|---|---|
FA | 56.4 | 23.2 | 7.6 | 3.3 | 1.0 |
BFS | 34.5 | 16.1 | 0.6 | 42.6 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-B.; Kim, J.-H.; Min, B.-G.; Woo, B.-H. Performance Assessment of Carbon Dioxide Sequestration in Cement Composites with a Granulation Technique. Materials 2024, 17, 53. https://doi.org/10.3390/ma17010053
Lee J-B, Kim J-H, Min B-G, Woo B-H. Performance Assessment of Carbon Dioxide Sequestration in Cement Composites with a Granulation Technique. Materials. 2024; 17(1):53. https://doi.org/10.3390/ma17010053
Chicago/Turabian StyleLee, Jeong-Bae, Jun-Hyeong Kim, Byeong-Gi Min, and Byeong-Hun Woo. 2024. "Performance Assessment of Carbon Dioxide Sequestration in Cement Composites with a Granulation Technique" Materials 17, no. 1: 53. https://doi.org/10.3390/ma17010053
APA StyleLee, J.-B., Kim, J.-H., Min, B.-G., & Woo, B.-H. (2024). Performance Assessment of Carbon Dioxide Sequestration in Cement Composites with a Granulation Technique. Materials, 17(1), 53. https://doi.org/10.3390/ma17010053