Photocatalytic Activity and Self-Cleaning Effect of Coating Mortars with TiO2 Added: Practical Cases in Warm Sub-Humid Climates
Abstract
:1. Introduction
2. Materials and Methods
2.1. TiO2 Nanoparticles Synthesis and Characterization
2.2. Mortar Mixtures
2.3. Exposure to the Weather Conditions
2.4. Photocatalytic Tests
2.5. Compressive Strenght Test
3. Results and Discussion
3.1. TiO2 Nanoparticle Characterization
3.2. Photocatalytic Activity in Coating Mortars
3.3. Degradation of Dyes in Coating Mortars Exposed to the Weather Conditions
3.4. Compressive Strength
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perez, C.; Lors, C.; Floquet, P.; Erable, B. Biodeterioration kinetics and microbial community organization on surface of cementitious materials exposed to anaerobic digestion conditions. J. Environ. Chem. Eng. 2021, 9, 105234. [Google Scholar] [CrossRef]
- Folli, A.; Pade, C.; Bæk, T.; De Marco, T.; Macphee, D.E. TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry. Cem. Concr. Res. 2012, 42, 539–548. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, M.J.; Rodríguez, R.S.; Darias, R.; Díaz, O.G.; Luzardo, J.M.P.; Rodríguez, J.M.D.; Pulido, E. Effect of TiO2 addition on mortars: Characterization and photoactivity. Appl. Sci. 2019, 9, 2598. [Google Scholar] [CrossRef]
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H.M. Review on: Titanium dioxide applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Atta-ur-Rehman; Kim, J.H.; Kim, H.G.; Qudoos, A.; Ryou, J.S. Effect of leaching on the hardened, microstructural and self-cleaning characteristics of titanium dioxide containing cement mortars. Constr. Build. Mater. 2019, 207, 640–650. [Google Scholar] [CrossRef]
- Rodríguez-González, V.; Obregón, S.; Patrón-Soberano, O.A.; Terashima, C.; Fujishima, A. An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes. Appl. Catal. B Environ. 2020, 270, 118853. [Google Scholar] [CrossRef]
- Graziani, L.; Quagliarini, E.; Osimani, A.; Aquilanti, L.; Clementi, F.; Yéprémian, C.; Lariccia, V.; Amoroso, S.; D’Orazio, M. Evaluation of inhibitory effect of TiO2 nanocoatings against microalgal growth on clay brick façades under weak UV exposure conditions. Build. Environ. 2013, 64, 38–45. [Google Scholar] [CrossRef]
- Trejo-Arroyo, D.L.; Acosta, K.E.; Cruz, J.C.; Valenzuela-Muñiz, A.M.; Vega-Azamar, R.E.; Jiménez, L.F. Influence of ZrO2 nanoparticles on the microstructural development of cement mortars with limestone aggregates. Appl. Sci. 2019, 9, 598. [Google Scholar] [CrossRef]
- Becerra, J.; Ortiz, P.; Zaderenko, A.P.; Karapanagiotis, I. Assessment of nanoparticles/nanocomposites to inhibit micro-algal fouling on limestone façades. Build. Res. Inf. 2020, 48, 180–190. [Google Scholar] [CrossRef]
- Singh, N.B.; Kalra, M.; Saxena, S.K. Nanoscience of Cement and Concrete. Mater. Today Proc. 2017, 4, 5478–5487. [Google Scholar] [CrossRef]
- Bossa, N.; Chaurand, P.; Levard, C.; Borschneck, D.; Miche, H.; Vicente, J.; Geantet, C.; Aguerre-Chariol, O.; Marc, F.; Rose, J. Environmental exposure to TiO2 nanomaterials incorporated in building material. Environ. Pollut. 2017, 220, 1160–1170. [Google Scholar] [CrossRef]
- Paolini, R.; Borroni, D.; Pedeferri, M.P.; Diamanti, M.V. Self-cleaning building materials: The multifaceted effects of titanium dioxide. Constr. Build. Mater. 2018, 182, 126–133. [Google Scholar] [CrossRef]
- Ganguly, P.; Byrne, C.; Breen, A.; Pillai, S.C. Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances. Appl. Catal. B Environ. 2018, 25, 51–75. [Google Scholar] [CrossRef]
- Kumari, H.; Suman, S.; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S.; Kumar, A.; et al. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water Air Soil Pollut. 2023, 234, 349. [Google Scholar] [CrossRef]
- Azzaz, A.A.; Jellali, S.; Hamed, N.B.H.; El Jery, A.; Khezami, L.; Assadi, A.A.; Amrane, A. Photocatalytic Treatment of Wastewater Containing Simultaneous Organic and Inorganic Pollution: Competition and Operating Parameters Effects. Catalysts 2021, 11, 855. [Google Scholar] [CrossRef]
- Baaloudj, O.; Assadi, A.A.; Azizi, M.; Kenfoud, H.; Trari, M.; Amrane, A.; Assadi, A.A.; Nasrallah, N. Synthesis and Characterization of ZnBi2O4 Nanoparticles: Photocatalytic Performance for Antibiotic Removal under Different Light Sources. Appl. Sci. 2021, 11, 3975. [Google Scholar] [CrossRef]
- Rabahi, A.; Assadi, A.A.; Nasrallah, N.; Bouzaza, A.; Maachi, R.; Wolbert, D. Photocatalytic treatment of petroleum industry wastewater using recirculating annular reactor: Comparison of experimental and modeling. Environ. Sci. Pollut. Res. 2019, 26, 19035–19046. [Google Scholar] [CrossRef] [PubMed]
- Castro-Hoyos, A.M.; Rojas, M.; Maury-Ramírez, A. Challenges and Opportunities of Using Titanium Dioxide. Coatings 2022, 2, 968. [Google Scholar] [CrossRef]
- Atta-ur-Rehman; Qudoos, A.; Kim, H.G.; Ryou, J.S. Influence of titanium dioxide nanoparticles on the sulfate attack upon ordinary Portland cement and slag-blended mortars. Materials 2018, 11, 356. [Google Scholar] [CrossRef]
- Haque, F.Z.; Nandanwar, R.; Singh, P. Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik 2017, 128, 191–200. [Google Scholar] [CrossRef]
- Cerro-Prada, E.; Manso, M.; Torres, V.; Soriano, J. Microstructural and photocatalytic characterization of cement-paste sol-gel synthesized titanium dioxide. Front. Struct. Civ. Eng. 2016, 10, 189–197. [Google Scholar] [CrossRef]
- Guo, M.Z.; Maury-Ramirez, A.; Poon, C.S. Photocatalytic activities of titanium dioxide incorporated architectural mortars: Effects of weathering and activation light. Build. Environ. 2015, 94, 395–402. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Q.; Peng, B.; Chai, L.; Liu, H. Self-cleaning performance of TiO2-coating cement materials prepared based on solidification/stabilization of electrolytic manganese residue. Constr. Build. Mater. 2016, 106, 236–242. [Google Scholar] [CrossRef]
- Calia, A.; Lettieri, M.; Masieri, M. Durability assessment of nanostructured TiO2 coatings applied on limestones to enhance building surface with self-cleaning ability. Build. Environ. 2016, 110, A12–A13. [Google Scholar] [CrossRef]
- Jimenez-Relinque, E.; Rodriguez-Garcia, J.R.; Castillo, A.; Castellote, M. Characteristics and efficiency of photocatalytic cementitious materials: Type of binder, roughness and microstructure. Cem. Concr. Res. 2015, 71, 124–131. [Google Scholar] [CrossRef]
- Cerro-Prada, E.; García-Salgado, S.; Quijano, M.Á.; Varela, F. Controlled synthesis and microstructural properties of Sol-Gel TiO2 nanoparticles for photocatalytic cement composites. Nanomaterials 2019, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Zarhri, Z.; Avilés, M.A.; Ziat, Y.; Hammi, M.; El Rhazouani, O.; Cruz, J.C.; Avellaneda, D. Synthesis, structural and crystal size effect on the optical properties of sprayed TiO2 thin films: Experiment and DFT TB-mbj. J. Alloys Compd. 2020, 819, 153010. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160. [Google Scholar] [CrossRef]
- ASTM C 144; Standard Specification for Aggregate for Masonry Mortar 1. ASTM: West Conshohocken, PA, USA, 2002.
- ASTM C 1437; Standard Test Method for Flow of Hydraulic Cement Mortar 1. ASTM: West Conshohocken, PA, USA, 2002.
- Vulic, T.; Hadnadjev-kostic, M.; Rudic, O.; Radeka, M.; Marinkovic-neducin, R.; Ranogajec, J. Improvement of cement-based mortars by application of photocatalytic active Ti–Zn–Al nanocomposites. Cem. Concr. Compos. 2013, 36, 121–127. [Google Scholar] [CrossRef]
- Pouretedal, H.R.; Norozi, A.; Keshavarz, M.H.; Semnani, A. Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J. Hazard. Mater. 2009, 162, 674–681. [Google Scholar] [CrossRef]
- ASTM C 109/C 109M; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM: West Conshohocken, PA, USA, 2002.
- Verma, R.; Gangwar, J.; Srivastava, A.K. Multiphase TiO2 nanostructures: A review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv. 2017, 7, 44199–44224. [Google Scholar] [CrossRef]
- Banerjee, S.; Pillai, S.C.; Falaras, P.; O’shea, K.E.; Byrne, J.A.; Dionysiou, D.D. New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 2014, 5, 2543–2554. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.R.; Veiga, M.d.R.; Santos, A.; de Brito, J. Microstructure as a critical factor of cement mortars’ behaviour: The effect of aggregates’ properties. Cem. Concr. Compos. 2020, 111, 103628. [Google Scholar] [CrossRef]
- Yang, L.; Hakki, A.; Wang, F.; Macphee, D.E. Photocatalyst efficiencies in concrete technology: The effect of photocatalyst placement. Appl. Catal. B Environ. 2017, 222, 200–208. [Google Scholar] [CrossRef]
- Han, B.; Ding, S.; Wang, J.; Ou, J. Nano-TiO2-Engineered Cementitious Composites. In Nano-Engineered Cementitious Composites; Springer: Singapore, 2019; pp. 561–599. [Google Scholar] [CrossRef]
- Jayapalan, A.R.; Lee, B.Y.; Kurtis, K.E. Can nanotechnology be ‘green’? Comparing efficacy of nano and microparticles in cementitious materials. Cem. Concr. Compos. 2013, 6, 16–24. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, X.; Hou, P.; Ye, Z. Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Constr. Build. Mater. 2015, 81, 35–41. [Google Scholar] [CrossRef]
- Chen, J.; Kou, S.C.; Poon, C.S. Hydration and properties of nano-TiO2 blended cement composites. Cem. Concr. Compos. 2012, 34, 642–649. [Google Scholar] [CrossRef]
- Ren, J.; Lai, Y.; Gao, J. Exploring the influence of SiO2 and TiO2 nanoparticles on the mechanical properties of concrete. Constr. Build. Mater. 2018, 175, 277–285. [Google Scholar] [CrossRef]
- Romani, M.; Warscheid, T.; Nicole, L.; Marcon, L.; Di Martino, P.; Suzuki, M.; Lebaron, P.; Lami, R. Current and future chemical treatments to fight biodeterioration of outdoor building materials and associated biofilms: Moving away from ecotoxic and towards efficient, sustainable solutions. Sci. Total Environ. 2022, 802, 149846. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuk-Dzul, L.; Jiménez, L.F.; Vega-Azamar, R.E.; Gurrola, M.P.; Cruz, J.C.; Trejo-Arroyo, D.L. Photocatalytic Activity and Self-Cleaning Effect of Coating Mortars with TiO2 Added: Practical Cases in Warm Sub-Humid Climates. Materials 2024, 17, 190. https://doi.org/10.3390/ma17010190
Kuk-Dzul L, Jiménez LF, Vega-Azamar RE, Gurrola MP, Cruz JC, Trejo-Arroyo DL. Photocatalytic Activity and Self-Cleaning Effect of Coating Mortars with TiO2 Added: Practical Cases in Warm Sub-Humid Climates. Materials. 2024; 17(1):190. https://doi.org/10.3390/ma17010190
Chicago/Turabian StyleKuk-Dzul, Liliana, Luis F. Jiménez, Ricardo E. Vega-Azamar, Mayra P. Gurrola, Julio C. Cruz, and Danna L. Trejo-Arroyo. 2024. "Photocatalytic Activity and Self-Cleaning Effect of Coating Mortars with TiO2 Added: Practical Cases in Warm Sub-Humid Climates" Materials 17, no. 1: 190. https://doi.org/10.3390/ma17010190
APA StyleKuk-Dzul, L., Jiménez, L. F., Vega-Azamar, R. E., Gurrola, M. P., Cruz, J. C., & Trejo-Arroyo, D. L. (2024). Photocatalytic Activity and Self-Cleaning Effect of Coating Mortars with TiO2 Added: Practical Cases in Warm Sub-Humid Climates. Materials, 17(1), 190. https://doi.org/10.3390/ma17010190