ZrO2 Superhydrophobic Coating with an Excellent Corrosion Resistance and Stable Degradation Performance on Zr-Based Bulk Metallic Glass
Abstract
:1. Introduction
2. Experimental Methods
2.1. Preparation of Coating
2.2. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumari, N.; Sareen, S.; Verma, M.; Sharma, S.; Sharma, A.; Sohal, H.S.; Mehta, S.K.; Park, J.; Mutreja, V. Zirconia-based nanomaterials: Recent developments in synthesis and applications. Nanoscale Adv. 2022, 4, 4210–4236. [Google Scholar] [CrossRef]
- George, A.; Raj, D.M.A.; Raj, A.D.; Nguyen, B.-S.; Phan, T.-P.; Pazhanivel, T.; Sivashanmugan, K.; Josephine, R.L.; Irudayaraj, A.A.; Arumugam, J.; et al. Morphologically tailored CuO nanostructures toward visible-light-driven photocatalysis. Mater. Lett. 2020, 281, 128603. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Bui, H.M.; Wang, Y.-F.; You, S.-J. High flux and hydrogen peroxide-assisted photocatalytic antifouling membranes from coatings of Cu@ZrO2 onto plasma-grafted PAA/PES. Mater. Today Commun. 2022, 33, 104383. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Giannakis, S.; Senyuz, T.; Decker, J.; Oulego, P.; Bensimon, M.; Guillaume, T.; Pulgarín, C. Sunshine and a pinch of tropical soils: A natural, low-cost photo-Fenton variation for safer water, assisted by H2O2 or percabonate. Sep. Purif. Technol. 2023, 321, 124221. [Google Scholar] [CrossRef]
- Hamlaoui, M.; Sahraoui, A.; Boulebd, H.; Zertal, A. Kinetics of three commercial textile dyes decomposition by UV/H2O2 and UV/acetone processes: An experimental comparative study and DFT calculations. J. Mol. Liq. 2023, 383, 122212. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Estrella, L.L.; Alemaida, I.M.A.; Lisin, A.; Moiseev, N.; Ahmadi, M.; Nazari, M.; Wali, M.; Zaheb, H.; Senjyu, T. Photocatalytic Applications of Metal Oxides for Sustainable Environmental Remediation. Metals 2021, 11, 80. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Q.; Song, Y. Retracted: Self-floating Cu/N co-doped TiO2/diatomite granule composite with enhanced visible-light-responsive photoactivity and reusability. J. Chem. Technol. Biotechnol. 2018, 94, 1210–1219. [Google Scholar] [CrossRef]
- Wang, Y.B.; Zheng, Y.F.; Wei, S.C.; Li, M. In vitro study on Zr-based bulk metallic glasses as potential biomaterials. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 96B, 34–46. [Google Scholar] [CrossRef]
- Cao, Y.; Xie, X.; Antonaglia, J.; Winiarski, B.; Wang, G.; Shin, Y.C.; Withers, P.J.; Dahmen, K.A.; Liaw, P.K. Laser Shock Peening on Zr-based Bulk Metallic Glass and Its Effect on Plasticity: Experiment and Modeling. Sci. Rep. 2015, 5, 10789. [Google Scholar] [CrossRef]
- Darmanin, T.; de Givenchy, E.T.; Amigoni, S.; Guittard, F. Superhydrophobic Surfaces by Electrochemical Processes. Adv. Mater. 2013, 25, 1378–1394. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, J.; Wang, Y.; Yu, M.; Liu, F.; Ding, G.; Zhao, X.; Liu, L. Preparation of stable and durable superhydrophobic surface on Zr-based bulk metallic glass. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127654. [Google Scholar] [CrossRef]
- Luo, Y.; Jiang, Y.; Zhang, P.; Wang, X.; Ke, H.; Zhang, P. A Novel Ni-Free Zr-Based Bulk Metallic Glass with High Glass Forming Ability, Corrosion Resistance and Thermal Stability. Chin. J. Mech. Eng. 2020, 33, 65. [Google Scholar] [CrossRef]
- Shahid, M.; Maiti, S.; Adivarekar, R.V.; Liu, S. Biomaterial based fabrication of superhydrophobic textiles—A review. Mater. Today Chem. 2022, 24, 100940. [Google Scholar] [CrossRef]
- Khan, M.Z.; Militky, J.; Petru, M.; Tomková, B.; Ali, A.; Tören, E.; Perveen, S. Recent advances in superhydrophobic surfaces for practical applications: A review. Eur. Polym. J. 2022, 178, 111481. [Google Scholar] [CrossRef]
- Lee, K.; Hwang, W.; Cho, H. Development of a versatile coating based on hydrolysis-assisted self-bonding and structure evolution of aluminum nitride nanopowder: Application toward repairing severe damages on superhydrophobic surfaces. Surf. Coat. Technol. 2023, 460, 129431. [Google Scholar] [CrossRef]
- Kokalj, A.; Lozinšek, M.; Kapun, B.; Taheri, P.; Neupane, S.; Losada-Pérez, P.; Xie, C.; Stavber, S.; Crespo, D.; Renner, F.U.; et al. Simplistic correlations between molecular electronic properties and inhibition efficiencies: Do they really exist? Corros. Sci. 2021, 179, 108856. [Google Scholar] [CrossRef]
- Qiu, Z.W.J.; Fu, H.M.; Zhang, H.W.; Li, H.; Li, Z.K.; Zhang, L.; Zhu, Z.W.; Wang, A.M.; Zhang, H.F. Effects of Ti addition on corrosion behavior of Zr-based metallic glass in chloride medium. J. Iron Steel Res. Int. 2018, 25, 650–657. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, L.; Zhao, X.; Ma, L. Enhanced chloride ion corrosion resistance of Zr-based bulk metallic glasses with cobalt substitution. J. Non-Cryst. Solids 2018, 496, 18–23. [Google Scholar] [CrossRef]
- Khorsand, S.; Raeissi, K.; Ashrafizadeh, F.; Arenas, M.A.; Conde, A. Corrosion behaviour of super-hydrophobic electrodeposited nickel–cobalt alloy film. Appl. Surf. Sci. 2016, 364, 349–357. [Google Scholar] [CrossRef]
- Basahel, S.N.; Ali, T.T.; Mokhtar, M.; Narasimharao, K. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 2015, 10, 73. [Google Scholar] [CrossRef]
- Borzyszkowska, A.F.; Sulowska, A.; Zekker, I.; Karczewski, J.; Bester, K.; Zielińska-Jurek, A. Environmentally Friendly Fabrication of High-Efficient Fe-ZnO/Citric Acid-Modified Cellulose Composite and the Enhancement of Photocatalytic Activity in the Presence of H2O2. Catalysts 2022, 12, 1370. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, R.; Zheng, R.; Li, C.; Wang, W.; Zhang, H.; Sun, Q.; Lv, J.; Zhang, G.; Liu, L.; Zhao, X. ZrO2 Superhydrophobic Coating with an Excellent Corrosion Resistance and Stable Degradation Performance on Zr-Based Bulk Metallic Glass. Materials 2024, 17, 118. https://doi.org/10.3390/ma17010118
Wei R, Zheng R, Li C, Wang W, Zhang H, Sun Q, Lv J, Zhang G, Liu L, Zhao X. ZrO2 Superhydrophobic Coating with an Excellent Corrosion Resistance and Stable Degradation Performance on Zr-Based Bulk Metallic Glass. Materials. 2024; 17(1):118. https://doi.org/10.3390/ma17010118
Chicago/Turabian StyleWei, Ranfeng, Rui Zheng, Chaojun Li, Wei Wang, Hao Zhang, Qijing Sun, Jingwang Lv, Guoyang Zhang, Li Liu, and Xiangjin Zhao. 2024. "ZrO2 Superhydrophobic Coating with an Excellent Corrosion Resistance and Stable Degradation Performance on Zr-Based Bulk Metallic Glass" Materials 17, no. 1: 118. https://doi.org/10.3390/ma17010118
APA StyleWei, R., Zheng, R., Li, C., Wang, W., Zhang, H., Sun, Q., Lv, J., Zhang, G., Liu, L., & Zhao, X. (2024). ZrO2 Superhydrophobic Coating with an Excellent Corrosion Resistance and Stable Degradation Performance on Zr-Based Bulk Metallic Glass. Materials, 17(1), 118. https://doi.org/10.3390/ma17010118