Influence of Manufacturing Defects on Mechanical Behavior of the Laser Powder Bed Fused Invar 36 Alloy: In-Situ X-ray Computed Tomography Studies
Abstract
:1. Introduction
2. Experimental and Methods
2.1. Materials and Specimens
2.2. In-Situ Tensile Tests
2.3. Digital Volume Correlation (DVC) Analysis
3. Results
3.1. Load-Displacement Curves
3.2. Three-Dimensional Volume Rendering
3.3. Defect Evolution Behavior
3.4. Fractography
4. Discussion
4.1. Deformation Mechanism
4.2. Defect Evolution Mechanism
4.3. Failure Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guillaume, C.E. Invar and its applications. Nature 1904, 71, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Saito, H. Physics and Applications of Invar Alloys; Maruzen: Tokyo, Japan; p. 1978.
- Yokoyama, T.; Eguchi, K. Anharmonicity and quantum effects in thermal expansion of an Invar alloy. Phys. Rev. Lett. 2011, 107, 65901. [Google Scholar] [CrossRef]
- Zheng, J.J.; Li, C.S.; He, S.; Cai, B.; Song, Y.L. Microstructural and tensile behavior of Fe-36%Ni alloy after cryorolling and subsequent annealing. Mater. Sci. Eng. A 2016, 670, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.J.; Li, C.S.; He, S.; Cai, B.; Song, Y.L. Deformation behavior of Fe-36Ni steel during cryogenic (123–173 K) rolling. J. Iron Steel Res. 2016, 23, 447–452. [Google Scholar] [CrossRef]
- Sahoo, A.; Medicherla, V.R.R. Fe-Ni Invar alloys: A review. Mater. Today Proc. 2021, 43, 2242–2244. [Google Scholar] [CrossRef]
- Wegener, T.; Brenne, F. On the structural integrity of Fe-36Ni Invar alloy processed by selective laser melting. Add. Manuf. 2021, 37, 101603. [Google Scholar] [CrossRef]
- Vinogradov, A.; Hashimoto, S.; Kopylov, V.I. Enhanced strength and fatigue life of ultra-fine grain Fe-36Ni invar alloy. Mater. Sci. Eng. A 2003, 355, 277–285. [Google Scholar] [CrossRef]
- Stephenson, T.; Tricker, D.; Tarrant, A.; Michel, R.; Clune, J. Physical and mechanical properties of LoVAR: A new lightweight particle-reinforced Fe-36Ni alloy. Proc. SPIE-Int. Soc. Opt. Eng. 2015, 9574, 957408. [Google Scholar] [CrossRef]
- Kaladhar, M.; Subbaiah, K.V.; Rao, C.H.S. Machining of austenitic stainless steels-a review. Int. J. Mach. Mach. Mater. 2012, 12, 178–192. [Google Scholar] [CrossRef]
- Wei, K.; Yang, Q.; Ling, B. Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Mater. Sci. Eng. A 2020, 772, 138799. [Google Scholar] [CrossRef]
- Qiu, C.; Adkins, N.J.E.; Attallah, M.M. Selective laser melting of Invar 36. Acta Mater. 2016, 103, 382–395. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Xiu, M.; Tan, Y.T.; Wei, J.; Wang, P. Pitting corrosion of SLM Inconel 718 sample under surface and heat treatments. Appl. Sur. Sci. 2019, 490, 556–567. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X.L.; Li, J.; Brochu, M.; Zhao, Y.F. Microstructures and properties of SLM-manufactured Cu-15Ni-8Sn alloy. Add. Manuf. 2020, 31, 100921. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.A.; Veldhuis, S.C. A study of thermal expansion coefficients and microstructure during selective laser melting of Invar 36 and stainless steel 316L. Add. Manuf. 2018, 24, 405–418. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.A.; Veldhuis, S.C. Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L. J. Mater. Process. Technol. 2019, 266, 397–420. [Google Scholar] [CrossRef]
- Du Plessis, A.; Yadroitsev, I.; Yadroitsava, I.; Le Roux, S. X-Ray Microcomputed Tomography in Additive Manufacturing: A Review of the Current Technology and Applications. D Print. Addit. Manuf. 2018, 5, 227–247. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.; Maskery, I.; Leach, R.K. X-ray computed tomography for additive manufacturing: A review. Meas. Sci. Technol. 2016, 27, 072001. [Google Scholar] [CrossRef]
- Du Plessis, A.; Yadroitsava, I.; Yadroitsev, I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater. Des. 2020, 187, 108385. [Google Scholar] [CrossRef]
- Morales-Rodríguez, A.; Reynaud, P.; Fantozzi, G.; Adrien, J.; Maire, E. Porosity analysis of long-fiber-reinforced ceramic matrix composites using X-ray tomography. Scr. Mater. 2009, 60, 388–390. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Li, H.; Hou, C.; Ren, F. 3D in-situ characterizations of damage evolution in C/SiC composite under monotonic tensile loading by using X-ray computed tomography. Appl. Compos. Mater. 2020, 27, 119–130. [Google Scholar] [CrossRef]
- Asgari, H.; Salarian, M.; Ma, H. On thermal expansion behavior of invar alloy fabricated by modulated laser powder bed fusion. Mater. Design. 2018, 160, 895–905. [Google Scholar] [CrossRef]
- Aldalur, E.; Suarez, A.; Veiga, F. Thermal expansion behaviour of Invar 36 alloy parts fabricated by wire-arc additive manufacturing. J. Mater. Res. Technol. 2022, 19, 3634–3645. [Google Scholar] [CrossRef]
- Niu, G.; Zhu, R.; Qu, Z. Internal damage evolution investigation of C/SiC composites using in-situ tensile X-ray computed tomography testing and digital volume correlation at 1000 °C. Compos. Part A 2022, 163, 107247. [Google Scholar] [CrossRef]
- Lee, S.; Hong, C.; Ji, W. In situ micromechanical analysis of discontinuous fiber-reinforced composite material based on DVC strain and fiber orientation fields. Compos. Part B. 2022, 247, 110361. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, K.; Qu, Z. Thermal shock resistance study of stereolithographic additive-manufactured Al2O3 ceramics by in situ digital radiography. Ceram Int. 2022, 48, 30086–30092. [Google Scholar] [CrossRef]
- Cai, N.; Meng, Q.; Zhang, K. Investigation on Flaw Evolution of Additively Manufactured Al2O3 Ceramic by In Situ X-ray Computed Tomography. Materials 2022, 15, 2547. [Google Scholar] [CrossRef]
- Kumar, R.; Villanova, J.; Lhuissier, P.; Salvo, L. In situ nanotomography study of creep cavities in Al-3.6-Cu alloy. Acta Mater. 2019, 16, 18–27. [Google Scholar] [CrossRef]
- Sloof, W.G.; Pei, R.; McDonald, S.A.; Fife, J.L.; Shen, L. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy. Sci. Rep. 2016, 6, 23040. [Google Scholar] [CrossRef]
- Zhu, R.; Qu, Z. An in situ microtomography apparatus with a laboratory x-ray source for elevated temperatures of up to 1000 °C. Rev. Sci. Instrum. 2021, 92, 033704. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Yang, Q.; Qu, Z.; Wei, K. Influence of Manufacturing Defects on Mechanical Behavior of the Laser Powder Bed Fused Invar 36 Alloy: In-Situ X-ray Computed Tomography Studies. Materials 2023, 16, 2956. https://doi.org/10.3390/ma16082956
Yang S, Yang Q, Qu Z, Wei K. Influence of Manufacturing Defects on Mechanical Behavior of the Laser Powder Bed Fused Invar 36 Alloy: In-Situ X-ray Computed Tomography Studies. Materials. 2023; 16(8):2956. https://doi.org/10.3390/ma16082956
Chicago/Turabian StyleYang, Shuo, Qidong Yang, Zhaoliang Qu, and Kai Wei. 2023. "Influence of Manufacturing Defects on Mechanical Behavior of the Laser Powder Bed Fused Invar 36 Alloy: In-Situ X-ray Computed Tomography Studies" Materials 16, no. 8: 2956. https://doi.org/10.3390/ma16082956
APA StyleYang, S., Yang, Q., Qu, Z., & Wei, K. (2023). Influence of Manufacturing Defects on Mechanical Behavior of the Laser Powder Bed Fused Invar 36 Alloy: In-Situ X-ray Computed Tomography Studies. Materials, 16(8), 2956. https://doi.org/10.3390/ma16082956