Adsorption of Pyrethroids in Water by Calcined Shell Powder: Preparation, Characterization, and Mechanistic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Equipment and Characterization
2.3. Preparation of Calcined Shell Powder
2.4. Optimization of the Preparation Process of Calcined Shell Powder
2.4.1. Adsorption Experiment Steps
2.4.2. Single-Factor Experiments
2.4.3. Box–Behnken Design
2.5. Batch Adsorption Experiment
2.5.1. Adsorption Experiments
2.5.2. Adsorption Kinetic Model
2.5.3. Adsorption Isotherm Model
2.6. Reusability Studies
2.7. Data Analysis
3. Results and Discussion
3.1. Analysis of the Response Surface
3.2. Characterization
3.2.1. XRD Characterization
3.2.2. Micro Topography Analysis
3.2.3. FT-IR Analysis
3.2.4. BET and Pore Analysis
3.3. Effects of Reaction Time
3.4. Adsorption Isotherms
3.5. Effects of OCSP Dosages
3.6. Effects of pH
3.7. Effects of NaCl Salinity
3.8. Reusability Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Cheng, F.; Wei, Y.; Lydy, M.J.; You, J. Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. J. Hazard. Mater. 2017, 324 Pt B, 258–271. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Wang, D.; Wang, J.; Wu, Z.; Li, L.; Huang, M.; Xu, S.; Yan, D. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere 2018, 191, 990–1007. [Google Scholar] [CrossRef] [PubMed]
- Soderlund, D.M. Molecular mechanisms of pyrethroid insecticide neurotoxicity: Recent advances. Arch. Toxicol. 2012, 86, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Shen, J.Y.; Zhang, R.; Hong, J.W.; Li, Z.; Ding, Z.; Wang, H.X.; Zhang, J.P.; Zhang, M.R.; Xu, L.C. Effects and mechanisms of pyrethroids on male reproductive system. Toxicology 2020, 438, 152460. [Google Scholar] [CrossRef] [PubMed]
- Marettova, E.; Maretta, M.; Legath, J. Effect of pyrethroids on female genital system. Review. Anim. Reprod. Sci. 2017, 184, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wu, N.; Wang, C. Toxicity of the pyrethroid bifenthrin insecticide. Environ. Chem. Lett. 2018, 16, 1377–1391. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Yang, H.; Petit, C.; Hsu, F.-K. Removing oil droplets from water using a copper-based metal organic frameworks. Chem. Eng. J. 2014, 249, 293–301. [Google Scholar] [CrossRef]
- Prasad, P.S.; Gomathi, T.; Sudha, P.N.; Deepa, M.; Rambabu, K.; Banat, F. Biosilica/Silk Fibroin/Polyurethane biocomposite for toxic heavy metals removal from aqueous streams. Environ. Technol. Innov. 2022, 28, 102741. [Google Scholar] [CrossRef]
- Lu, W.; Lu, S.; Jing, H.; Sun, J.; Ji, L.; Guo, J.; Wang, Y.; Cai, L.; Song, F.; Song, W. Hierarchical porous mussel shells as soil amendment for oil spill remediation. Environ. Technol. 2022, 43, 3189–3197. [Google Scholar] [CrossRef]
- Chen, S.; Lin, Q.; Xiao, Y.; Deng, Y.; Chang, C.; Zhong, G.; Hu, M.; Zhang, L.H. Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp. PLoS ONE 2013, 8, e75450. [Google Scholar] [CrossRef] [Green Version]
- Rambabu, K.; Bharath, G.; Avornyo, A.; Thanigaivelan, A.; Hai, A.; Banat, F. Valorization of date palm leaves for adsorptive remediation of 2,4-dichlorophenoxyacetic acid herbicide polluted agricultural runoff. Environ. Pollut. 2023, 316 Pt 2, 120612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, F.; Ouyang, X.K.; Yang, L.Y.; Wang, Y. Adsorption of Pb(II) from Aqueous Solution by Mussel Shell-Based Adsorbent: Preparation, Characterization, and Adsorption Performance. Materials 2021, 14, 741. [Google Scholar] [CrossRef] [PubMed]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Lee, S.C.; Goh, W.I.; Yuen, C.W. Recycling of seashell waste in concrete: A review. Constr. Build. Mater. 2018, 162, 751–764. [Google Scholar] [CrossRef]
- Paradelo, R.; Conde-Cid, M.; Cutillas-Barreiro, L.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. Phosphorus removal from wastewater using mussel shell: Investigation on retention mechanisms. Ecol. Eng. 2016, 97, 558–566. [Google Scholar] [CrossRef]
- Álvarez, E.; Fernández-Sanjurjo, M.J.; Seco, N.; Núñez, A. Use of Mussel Shells as a Soil Amendment: Effects on Bulk and Rhizosphere Soil and Pasture Production. Pedosphere 2012, 22, 152–164. [Google Scholar] [CrossRef]
- Peña-Rodríguez, S.; Bermúdez-Couso, A.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Mercury removal using ground and calcined mussel shell. J. Environ. Sci. 2013, 25, 2476–2486. [Google Scholar] [CrossRef]
- Peinemann, J.C.; Krenz, L.M.M.; Pleissner, D. Is seashell powder suitable for phosphate recovery from fermentation broth? N. Biotechnol. 2019, 49, 43–47. [Google Scholar] [CrossRef]
- Yu, C. Removal of Cr(VI) from aqueous solutions by nZVI-loaded sludge-derived biochar: Performance and mechanism. Water Sci. Technol. 2022, 86, 2089–2105. [Google Scholar] [CrossRef]
- Liu, J.; Wei, X.; Ren, S.; Qi, J.; Cao, J.; Wang, J.; Wan, Y.; Liu, Y.; Zhao, M.; Wang, L.; et al. Synergetic removal of thallium and antimony from wastewater with jacobsite-biochar-persulfate system. Environ. Pollut. 2022, 304, 119196. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, K.; Guo, C.; Kou, Y.; Hassan, A.; Lu, Y.; Wang, J.; Wang, W. Competition adsorption of malachite green and rhodamine B on polyethylene and polyvinyl chloride microplastics in aqueous environment. Water Sci. Technol. 2022, 86, 894–908. [Google Scholar] [CrossRef]
- Jamshaid, M.; Nazir, M.A.; Najam, T.; Shah, S.S.A.; Khan, H.M.; Rehman, A. Facile synthesis of Yb3+-Zn2+ substituted M type hexaferrites: Structural, electric and photocatalytic properties under visible light for methylene blue removal. Chem. Phys. Lett. 2022, 805, 139939. [Google Scholar] [CrossRef]
- Li, H.; Wang, F.; Li, J.; Deng, S.; Zhang, S. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere 2021, 264 Pt 2, 128556. [Google Scholar] [CrossRef]
- Deng, F.; Sun, J.; Dou, R.; Yu, X.; Wei, Z.; Yang, C.; Zeng, X.; Zhu, L. Contamination of pyrethroids in agricultural soils from the Yangtze River Delta, China. Sci. Total Environ. 2020, 731, 139181. [Google Scholar] [CrossRef]
- El Haddad, M.; Regti, A.; Slimani, R.; Lazar, S. Assessment of the biosorption kinetic and thermodynamic for the removal of safranin dye from aqueous solutions using calcined mussel shells. J. Ind. Eng. Chem. 2014, 20, 717–724. [Google Scholar] [CrossRef]
- Rambabu, K.; AlYammahi, J.; Thanigaivelan, A.; Bharath, G.; Sivarajasekar, N.; Velu, S.; Banat, F. Sub-critical water extraction of reducing sugars and phenolic compounds from date palm fruit. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Gonzalez, B.; Grasa, G.S.; Alonso, M.; Abanades, J.C. Modeling of the Deactivation of CaO in a Carbonate Loop at High Temperatures of Calcination. Ind. Eng. Chem. Res. 2008, 47, 9256–9262. [Google Scholar] [CrossRef]
- Pan, L.; Nishimura, Y.; Takaesu, H.; Matsui, Y.; Matsushita, T.; Shirasaki, N. Effects of decreasing activated carbon particle diameter from 30 mum to 140 nm on equilibrium adsorption capacity. Water Res. 2017, 124, 425–434. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, Z.; Peng, C.; Anaman, R.; Ran, H.; Xiao, X. Adsorption of Cd on Soils with Various Particle Sizes from an Abandoned Non-ferrous Smelting Site: Characteristics and Mechanism. Bull. Environ. Contam. Toxicol. 2022, 109, 630–635. [Google Scholar] [CrossRef]
- Svenskaya, Y.; Parakhonskiy, B.; Haase, A.; Atkin, V.; Lukyanets, E.; Gorin, D.; Antolini, R. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophys. Chem. 2013, 182, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Loy, C.W.; Amin Matori, K.; Lim, W.F.; Schmid, S.; Zainuddin, N.; Abdul Wahab, Z.; Nadakkavil Alassan, Z.; Mohd Zaid, M.H. Effects of Calcination on the Crystallography and Nonbiogenic Aragonite Formation of Ark Clam Shell under Ambient Condition. Adv. Mater. Sci. Eng. 2016, 2016, 2914368. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, Z.; Huang, B.; Luo, N.; Long, L.; Huang, M.; Zhai, X.; Zeng, G. Effect of land use pattern change from paddy soil to vegetable soil on the adsorption-desorption of cadmium by soil aggregates. Environ. Sci. Pollut. Res. Int. 2017, 24, 2734–2743. [Google Scholar] [CrossRef]
- Kumar, A.; Mohan Jena, H. High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation. Appl. Surf. Sci. 2015, 356, 753–761. [Google Scholar] [CrossRef]
- Ji, L.; Song, W.; Wei, D.; Jiang, D.; Cai, L.; Wang, Y.; Guo, J.; Zhang, H. Modified mussel shell powder for microalgae immobilization to remove N and P from eutrophic wastewater. Bioresour. Technol. 2019, 284, 36–42. [Google Scholar] [CrossRef]
- Singh, M.; Vinodh Kumar, S.; Waghmare, S.A.; Sabale, P.D. Aragonite–vaterite–calcite: Polymorphs of CaCO3 in 7th century CE lime plasters of Alampur group of temples, India. Constr. Build. Mater. 2016, 112, 386–397. [Google Scholar] [CrossRef]
- Galvan-Ruiz, M.; Hernandez, J.; Banos, L.; Noriega-Montes, J.; Rodriguez-Garcia, M.E. Characterization of Calcium Carbonate, Calcium Oxide, and Calcium Hydroxide as Starting Point to the Improvement of Lime for Their Use in Construction. J. Mater. Civ. Eng. 2009, 21, 694–698. [Google Scholar] [CrossRef]
- Tunusoglu, O.; Shahwan, T.; Eroglu, A.E. Retention of aqueous Ba2+ ions by calcite and aragonite over a wide range of concentrations: Characterization of the uptake capacity, and kinetics of sorption and precipitate formation. Geochem. J. 2007, 41, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Krutof, A.; Bamdad, H.; Hawboldt, K.A.; MacQuarrie, S. Co-pyrolysis of softwood with waste mussel shells: Biochar analysis. Fuel 2020, 282, 118792. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Inglezakis, V.J.; Poulopoulos, S.G.; Kazemian, H. Insights into the S-shaped sorption isotherms and their dimensionless forms. Microporous Mesoporous Mater. 2018, 272, 166–176. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Liu, L.; Ju, M. Study on the long-term effects of DOM on the adsorption of BPS by biochar. Chemosphere 2020, 242, 125165. [Google Scholar] [CrossRef]
- Liu, J.; Ren, S.; Cao, J.; Tsang, D.C.W.; Beiyuan, J.; Peng, Y.; Fang, F.; She, J.; Yin, M.; Shen, N.; et al. Highly efficient removal of thallium in wastewater by MnFe2O4-biochar composite. J. Hazard. Mater. 2021, 401, 123311. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Yang, Y.; Huang, M.; Fu, S.; Hao, Y.; Hu, S.; Lai, D.; Zhao, L. Adsorption behaviors and mechanisms of antibiotic norfloxacin on degradable and nondegradable microplastics. Sci. Total Environ. 2022, 807 Pt 3, 151042. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qin, Q.; Hu, Z.; Yan, L.; Ieong, U.I.; Xu, Y. Adsorption of chlorophenols on polyethylene terephthalate microplastics from aqueous environments: Kinetics, mechanisms and influencing factors. Environ. Pollut. 2020, 265 Pt A, 114926. [Google Scholar] [CrossRef]
- Hossain, A.; Bhattacharyya, S.R.; Aditya, G. Biosorption of Cadmium by Waste Shell Dust of Fresh Water Mussel Lamellidens marginalis: Implications for Metal Bioremediation. ACS Sustain. Chem. Eng. 2014, 3, 1–8. [Google Scholar] [CrossRef]
- Khan, M.R.; Rahman, M.M.; Mozumder, M.S.I.; Uddin, M.J.; Islam, M.A. Adsorption Behavior of Reactive Dye from Aqueous Phase on Activated Carbon. Pol. J. Chem. 2009, 83, 1365–1378. [Google Scholar]
- Fan, S.; Li, H.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Cadmium removal from aqueous solution by biochar obtained by co-pyrolysis of sewage sludge with tea waste. Res. Chem. Intermed. 2017, 44, 135–154. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Zhou, B.; Zhou, Y.; Dai, Z.; Zhou, Q.; Chriestie, P.; Luo, Y. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ. Pollut. 2018, 243 Pt B, 1550–1557. [Google Scholar] [CrossRef]
- Gupta, S.; Handa, S.K.; Sharma, K.K. A new spray reagent for the detection of synthetic pyrethroids containing a nitrile group on thin-layer plates. Talanta 1998, 45, 1111–1114. [Google Scholar] [CrossRef]
- Thakur, S.; Singh, S.; Pal, B. Superior adsorption removal of dye and high catalytic activity for transesterification reaction displayed by crystalline CaO nanocubes extracted from mollusc shells. Fuel Process. Technol. 2021, 213, 106707. [Google Scholar] [CrossRef]
- Yu, F.; Ma, J.; Wang, J.; Zhang, M.; Zheng, J. Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere 2016, 146, 162–172. [Google Scholar] [CrossRef]
- Singh, S.; Lundborg, C.S.; Diwan, V. Factors influencing the adsorption of antibiotics onto activated carbon in aqueous media. Water Sci. Technol. 2022, 86, 2260–2269. [Google Scholar] [CrossRef] [PubMed]
BET Surface Area (m2/g) | Pore Volume (cm2/g) | Pore Size (nm) | |
---|---|---|---|
USP | 1.42 | 4.74 × 10−3 | 12.80 |
OCSP | 3.97 | 1.66 × 10−2 | 15.48 |
Models and Parameters | Bifenthrin | Cypermethrin |
---|---|---|
Pseudo first-order | ||
qe (cal) (mg/g) | 0.37 | 0.88 |
k1 (min−1) | 0.17 | 0.15 |
R2 | 0.9444 | 0.9651 |
Pseudo second-order | ||
qe (cal) (mg/g) | 0.95 | 1.69 |
k2 (g/mg·min) | 0.75 | 0.26 |
R2 | 0.9994 | 0.9971 |
Intra-particle diffusion | ||
kp1 (mg/g·min1/2) | 0.27 | 0.38 |
R2 | 0.9888 | 0.9743 |
kp2 (mg/g·min1/2) | 0.05 | 0.15 |
R2 | 0.9941 | 0.9965 |
kp3 (mg/g·min1/2) | 0.02 | 0.03 |
R2 | 0.9647 | 0.9383 |
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
Pyrethroids | qm (mg/g) | KL (L/mg) | R2 | KF | n | R2 |
Bifenthrin | 1.05 | 1.24 | 0.9975 | 0.50 | 0.41 | 0.9641 |
Cypermethrin | 1.79 | 2.05 | 0.9855 | 1.06 | 0.42 | 0.9002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Tao, S.; Fu, S.; Yang, H.; Lin, B.; Lou, Y.; Li, Y. Adsorption of Pyrethroids in Water by Calcined Shell Powder: Preparation, Characterization, and Mechanistic Analysis. Materials 2023, 16, 2802. https://doi.org/10.3390/ma16072802
Ma X, Tao S, Fu S, Yang H, Lin B, Lou Y, Li Y. Adsorption of Pyrethroids in Water by Calcined Shell Powder: Preparation, Characterization, and Mechanistic Analysis. Materials. 2023; 16(7):2802. https://doi.org/10.3390/ma16072802
Chicago/Turabian StyleMa, Xiaohan, Siyuan Tao, Shiqian Fu, Huicheng Yang, Bangchu Lin, Yongjiang Lou, and Yongyong Li. 2023. "Adsorption of Pyrethroids in Water by Calcined Shell Powder: Preparation, Characterization, and Mechanistic Analysis" Materials 16, no. 7: 2802. https://doi.org/10.3390/ma16072802