The Charge Distribution, Seebeck Coefficient, and Carrier Concentration of CuCr0.99Ln0.01S2 (Ln = Dy–Lu)
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ataca, C.; Şahin, H.; Ciraci, S. Stable, Single-Layer MX 2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure. J. Phys. Chem. C 2012, 116, 8983–8999. [Google Scholar] [CrossRef]
- Chernozatonskii, L.A.; Artyukh, A.A. Quasi-Two-Dimensional Transition Metal Dichalcogenides: Structure, Synthesis, Properties, and Applications. Physics-Uspekhi 2018, 61, 2–28. [Google Scholar] [CrossRef]
- Ushakov, A.V.; Kukusta, D.A.; Yaresko, A.N.; Khomskii, D.I. Magnetism of Layered Chromium Sulfides MCrS2 (M = Li, Na, K, Ag, and Au): A First-Principles Study. Phys. Rev. B 2013, 87, 014418. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.J.; Peng, K.L.; Huang, Y.L.; Liao, H.J.; Huang, Z.Y.; Li, J.; Yan, Y.C.; Gu, H.S.; Zhang, B.; Hu, Y.M.; et al. Enhanced Thermoelectric Performance of Cu2SnSe3 via Synergistic Effects of Cd-Doping and CuGaTe2 Alloying. Rare Met. 2022, 41, 3466–3474. [Google Scholar] [CrossRef]
- Peng, J.; Chen, Z.-J.; Ding, B.; Cheng, H.-M. Recent Advances for the Synthesis and Applications of 2-Dimensional Ternary Layered Materials. Research 2023, 6, 0040. [Google Scholar] [CrossRef]
- Nandihalli, N. Thermoelectric Films and Periodic Structures and Spin Seebeck Effect Systems: Facets of Performance Optimization. Mater. Today Energy 2022, 25, 100965. [Google Scholar] [CrossRef]
- Nandihalli, N.; Gregory, D.H.; Mori, T.; Nandihalli, N.; Mori, T.; Gregory, D.H. Energy-Saving Pathways for Thermoelectric Nanomaterial Synthesis: Hydrothermal/Solvothermal, Microwave-Assisted, Solution-Based, and Powder Processing. Adv. Sci. 2022, 9, 2106052. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Lv, H.; Li, Y.; Lin, Y.; Su, Y.; Wu, J.; Liu, H.; Guo, Y.; Zhuo, Z.; et al. Stoichiometric Two-Dimensional Non-van Der Waals AgCrS2 with Superionic Behaviour at Room Temperature. Nat. Chem. 2021, 13, 1235–1240. [Google Scholar] [CrossRef]
- Yakovleva, G.E.; Romanenko, A.I.; Ledneva, A.Y.; Belyavin, V.A.; Kuznetsov, V.A.; Berdinsky, A.S.; Burkov, A.T.; Konstantinov, P.P.; Novikov, S.V.; Han, M.K.; et al. Thermoelectric Properties of W1−xNbxSe2−ySy Polycrystalline Compounds. J. Am. Ceram. Soc. 2019, 102, 6060–6067. [Google Scholar] [CrossRef]
- Romanenko, A.I.; Chebanova, G.E.; Katamanin, I.N.; Drozhzhin, M.V.; Artemkina, S.B.; Han, M.-K.; Kim, S.-J.; Wang, H. Enhanced Thermoelectric Properties of Polycrystalline CuCrS2−xSex (x = 0, 0.5, 1.0, 1.5, 2) Samples by Replacing Chalcogens and Sintering. J. Phys. D Appl. Phys. 2021, 55, 135302. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Pelmenev, K.G.; Zvereva, V.V.; Peregudova, N.N. Seebeck Coefficient of Cation-Substituted Disulfides CuCr1−xFexS2 and Cu1−xFexCrS2. J. Electron. Mater. 2018, 47, 3392–3397. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Kalinkin, A.V.; Sotnikov, A.V. Valence Band Structure and Charge Distribution in the Layered Lanthanide-Doped CuCr0.99Ln0.01S2 (Ln = La, Ce) Solid Solutions. Sci. Rep. 2021, 11, 18934. [Google Scholar] [CrossRef]
- Sanchez Rodriguez, J.J.; Nunez Leon, A.N.; Abbasi, J.; Shinde, P.S.; Fedin, I.; Gupta, A. Colloidal Synthesis, Characterization, and Photoconductivity of Quasi-Layered CuCrS2 Nanosheets. Nanomaterials 2022, 12, 4164. [Google Scholar] [CrossRef]
- Deng, S.P.; Jiang, X.Y.; Chen, L.L.; Zhang, Z.Y.; Qi, N.; Wu, Y.C.; Tang, X.F.; Chen, Z.Q. Structural Features and Thermoelectric Performance of Sb- and Bi-Doped Cu2SnSe3 Compounds. Rare Met. 2021, 40, 2474–2485. [Google Scholar] [CrossRef]
- Troitskaia, I.; Troitskaia, I.B.; Syrokvashin, M.M.; Korotaev, E.V.; Saprykin, A.I. Effect of Gas-Chromatography Column Regeneration during the CHN/S Analysis of Copper-Chromium Disulfide. Chim. Techno Acta 2022, 9, 20229423. [Google Scholar] [CrossRef]
- Titov, S.V.; Gorbenko, A.P.; Yakshibaev, R.A.; Reznichenko, L.A.; Al’mukhametov, R.F.; Titov, V.V.; Shilkina, L.A. Ion Conductivity, Structural Features, and Multifractal Properties of Grain Boundaries in CuCr1−xVxS2. Bull. Russ. Acad. Sci. Phys. 2007, 71, 719–720. [Google Scholar] [CrossRef]
- Karmakar, A.; Dey, K.; Chatterjee, S.; Majumdar, S.; Giri, S. Spin Correlated Dielectric Memory and Rejuvenation in Multiferroic CuCrS2. Appl. Phys. Lett. 2014, 104, 052906. [Google Scholar] [CrossRef] [Green Version]
- Tewari, G.C.; Tripathi, T.S.; Rastogi, A.K. Thermoelectric Properties of Layer-Antiferromagnet CuCrS2. J. Electron. Mater. 2010, 39, 1133–1139. [Google Scholar] [CrossRef] [Green Version]
- Abramova, G.M.; Petrakovskiǐ, G.A.; Vtyurin, A.N.; Vorotynov, A.M.; Velikanov, D.A.; Krylov, A.S.; Gerasimova, Y.; Sokolov, V.V.; Bovina, A.F. Magnetic Properties, Magnetoresistance, and Raman Spectra of CuVxCr1–XS2. Phys. Solid State 2009, 51, 532–536. [Google Scholar] [CrossRef]
- Hansen, A.-L.; Dankwort, T.; Groß, H.; Etter, M.; König, J.; Duppel, V.; Kienle, L.; Bensch, W. Structural Properties of the Thermoelectric Material CuCrS2 and of Deintercalated CuxCrS2 on Different Length Scales: X-ray Diffraction, Pair Distribution Function and Transmission Electron Microscopy Studies. J. Mater. Chem. C 2017, 5, 9331–9338. [Google Scholar] [CrossRef]
- Wolf, M.; Hinterding, R.; Feldhoff, A. High Power Factor vs. High ZT-A Review of Thermoelectric Materials for High-Temperature Application. Entropy 2019, 21, 1058. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Basu, R.; Bhatt, R.; Pitale, S.; Singh, A.; Aswal, D.K.; Gupta, S.K.; Navaneethan, M.; Hayakawa, Y. CuCrSe2: A High Performance Phonon Glass and Electron Crystal Thermoelectric Material. J. Mater. Chem. A 2013, 1, 11289–11294. [Google Scholar] [CrossRef]
- Wu, D.; Huang, S.; Feng, D.; Li, B.; Chen, Y.; Zhang, J.; He, J. Revisiting AgCrSe2 as a Promising Thermoelectric Material. Phys. Chem. Chem. Phys. 2016, 18, 23872–23878. [Google Scholar] [CrossRef]
- Zoui, M.A.; Bentouba, S.; Stocholm, J.G.; Bourouis, M. A Review on Thermoelectric Generators: Progress and Applications. Energies 2020, 13, 3606. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Trubina, S.V.; Nikolenko, A.D.; Ivlyushkin, D.V.; Zavertkin, P.S.; Sotnikov, A.V.; Kriventsov, V.V. XANES Investigation of Novel Lanthanide-Doped CuCr0.99Ln0.01S2 (Ln = La, Ce) Solid Solutions. Appl. Phys. A 2020, 126, 537. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A.V.; Kalinkin, A.V. Charge Distribution in Layered Lanthanide-Doped CuCr0.99Ln0.01S2 (Ln = Pr – Tb) Thermoelectric Materials. Materials 2022, 15, 8747. [Google Scholar] [CrossRef]
- Tsujii, N.; Kitazawa, H.; Kido, G. Insulator to Metal Transition Induced by Substitution in the Nearly Two-Dimensional Compound CuCr1−XVxS2. Phys. Status Solidi 2006, 3, 2775–2778. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Zvereva, V.V. Vanadium Doped Layered Copper-Chromium Sulfides: The Correlation between the Magnetic Properties and XES Data. Vacuum 2020, 179, 109390. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskii, G.A. Metal-Insulator Transition, Magnetoresistance, and Magnetic Properties of 3d-Sulfides (Review). Low Temp. Phys. 2006, 32, 725–734. [Google Scholar] [CrossRef]
- Shalimova, K.V. Semiconductors Physics; Lan: St. Petersburg, Russia, 2021; ISBN 978-5-8114-0922-8. [Google Scholar]
- Sotnikov, A.V.; Bakovets, V.V.; Sokolov, V.V.; Filatova, I.Y. Lanthanum Oxide Sulfurization in Ammonium Rhodanide Vapor. Inorg. Mater. 2014, 50, 1024–1029. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Zvereva, V.V. Magnetic Properties of Novel Layered Disulfides CuCr0.99Ln0.01S2 (Ln = La…Lu). Materials 2021, 14, 5101. [Google Scholar] [CrossRef] [PubMed]
- Korotaev, E.V.; Peregudova, N.N.; Mazalov, L.N.; Sokolov, V.V.; Kalinkin, A.V.; Kryuchkova, N.A.; Dikov, Y.P.; Buleev, M.I.; Filatova, I.Y.; Pichugin, A.Y. Photoelectron Spectra of Powder and Single Crystalline Chromium-Copper Disulfides. J. Struct. Chem. 2013, 54, 255–258. [Google Scholar] [CrossRef]
- Fang, D.; He, F.; Xie, J.; Xue, L. Calibration of Binding Energy Positions with C1s for XPS Results. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2020, 35, 711–718. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A. V Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2. Materials 2021, 14, 2729. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Doughty, R.M.; Osterloh, F.E.; Zaikina, J.V. Deep Eutectic Solvent Route Synthesis of Zinc and Copper Vanadate N-Type Semiconductors—Mapping Oxygen Vacancies and Their Effect on Photovoltage. J. Mater. Chem. A 2019, 7, 12303–12316. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S. Satellites in ESCA Inner-Shell Spectra of 3d0 Transition Metal Complexes. J. Electron Spectros. Relat. Phenomena 1976, 8, 171–178. [Google Scholar] [CrossRef]
- Mikhlin, Y.L.; Tomashevich, Y.V.; Pashkov, G.L.; Okotrub, A.V.; Asanov, I.P.; Mazalov, L.N. Electronic Structure of the Non-Equilibrium Iron-Deficient Layer of Hexagonal Pyrrhotite. Appl. Surf. Sci. 1998, 125, 73–84. [Google Scholar] [CrossRef]
- Mikhlin, Y.; Karacharov, A.; Vorobyev, S.; Romanchenko, A.; Likhatski, M.; Antsiferova, S.; Markosyan, S. Towards Understanding the Role of Surface Gas Nanostructures: Effect of Temperature Difference Pretreatment on Wetting and Flotation of Sulfide Minerals and Pb-Zn Ore. Nanomaterials 2020, 10, 1362. [Google Scholar] [CrossRef]
- Padalia, B.D.; Lang, W.C.; Norris, P.R.; Watson, L.M.; Fabian, D.J. X-ray Photoelectron Core-Level Studies of the Heavy Rare-Earth Metals and Their Oxides. Proc. R. Soc. A Math. Phys. Eng. Sci. 1977, 354, 269–290. [Google Scholar] [CrossRef]
- Syrokvashin, M.M.; Korotaev, E.V.; Kryuchkova, N.A.; Zvereva, V.V.; Filatova, I.Y.; Kalinkin, A.V. Surface and Bulk Charge Distribution in Manganese Sulfide Doped with Lanthanide Ions. Appl. Surf. Sci. 2019, 492, 209–218. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Trubina, S.V.; Nikolenko, A.D.; Ivlyushkin, D.V.; Zavertkin, P.S.; Kriventsov, V.V. The Conduction Band of the Lanthanide Doped Chromium Disulfides CuCr0.99Ln0.01S2 (Ln = La, Ce, Gd): XANES Investigations. Proc. AIP Conf. Proc. 2020, 2299, 080004. [Google Scholar] [CrossRef]
Temperature (°C) | Duration (h) | |
---|---|---|
CuCr0.99Dy0.01S2 | 300 550 700 950 * 1050 * 1050 * | 0.25 0.30 2 4 4 3 |
CuCr0.99Ho0.01S2 | 300 550 700 950 * 1050 * 1050 * | 0.25 0.30 2.6 2.5 4 2.5 |
CuCr0.99Er0.01S2 | 300 550 700 950 * 1100 * 1100 * | 0.25 0.30 1 4.6 2.25 4 |
CuCr0.99Tm0.01S2 | 300 550 700 950 * 1000 * 1100 * 1100 * 1100 * | 0.25 0.30 3 0.6 2.5 3.15 =3.15 3 |
CuCr0.99Yb0.01S2 | 300 550 700 950 * 1100 * 1100 * 1100 * | 0.25 0.30 3 2.75 2 2.5 3.25 |
CuCr0.99Lu0.01S2 | 300 550 700 * 950 * 1000 * 1000 * 1050 * | 0.25 0.30 3.15 4.30 4 4.3 4.5 |
Cu2p3/2,1/2 | Cr2p3/2,1/2 | S2p3/2 | Dy3d3/2 | |
---|---|---|---|---|
CuCr0.99Dy0.01S2 | 932.5 933.3 | 574.8 576.6 | 161.5 163.0 | 1335.6 |
CuCr0.99Ho0.01S2 | 932.6 933.3 | 574.7 576.4 | 161.5 163.0 | – |
CuCr0.99Er0.01S2 | 932.3 933.7 | 574.7 576.4 | 161.6 163.0 | – |
CuCr0.99Tm0.01S2 | 932.5 933.5 | 574.5 576.6 | 161.1 162.8 | – |
CuCr0.99Yb0.01S2 | 932.4 933.4 | 574.6 576.7 | 161.3 162.7 | – |
CuCr0.99Lu0.01S2 | 932.5 933.6 | 574.7 576.8 | 161.5 162.9 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A.V.; Kalinkin, A.V. The Charge Distribution, Seebeck Coefficient, and Carrier Concentration of CuCr0.99Ln0.01S2 (Ln = Dy–Lu). Materials 2023, 16, 2431. https://doi.org/10.3390/ma16062431
Korotaev EV, Syrokvashin MM, Filatova IY, Sotnikov AV, Kalinkin AV. The Charge Distribution, Seebeck Coefficient, and Carrier Concentration of CuCr0.99Ln0.01S2 (Ln = Dy–Lu). Materials. 2023; 16(6):2431. https://doi.org/10.3390/ma16062431
Chicago/Turabian StyleKorotaev, Evgeniy V., Mikhail M. Syrokvashin, Irina Yu. Filatova, Aleksandr V. Sotnikov, and Alexandr V. Kalinkin. 2023. "The Charge Distribution, Seebeck Coefficient, and Carrier Concentration of CuCr0.99Ln0.01S2 (Ln = Dy–Lu)" Materials 16, no. 6: 2431. https://doi.org/10.3390/ma16062431
APA StyleKorotaev, E. V., Syrokvashin, M. M., Filatova, I. Y., Sotnikov, A. V., & Kalinkin, A. V. (2023). The Charge Distribution, Seebeck Coefficient, and Carrier Concentration of CuCr0.99Ln0.01S2 (Ln = Dy–Lu). Materials, 16(6), 2431. https://doi.org/10.3390/ma16062431