A Novel POP-Ni Catalyst Derived from PBTP for Ambient Fixation of CO2 into Cyclic Carbonates
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Synthesis of PBTP
2.3. The Synthesis of PBTP-Me6Tren
2.4. The Synthesis of PBTP-Me6Tren (Ni) (POP-Ni)
2.5. Evaluation of the Catalyst by CO2 Cycloaddition Reaction
3. Results and Discussion
3.1. Catalyst Characterization
3.2. Investigation of the Catalytic Performance
3.3. Applicability of Catalyst POP-Ni
3.4. Catalyst Reusability
3.5. Plausible Reaction Pathway
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gilfillan, D.; Marland, G. CDIAC-FF: Global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017. Earth Syst. Sci. Data 2021, 13, 1667–1680. [Google Scholar] [CrossRef]
- Ostovari, H.; Muller, L.; Skocek, J.; Bardow, A. From Unavoidable CO2 Source to CO2 Sink? A Cement Industry Based on CO2 Mineralization. Environ. Sci. Technol. 2021, 55, 5212–5223. [Google Scholar] [CrossRef]
- Wang, Y.L.; Ciais, P.; Broquet, G.; Breon, F.M.; Oda, T.; Lespinas, F.; Meijer, Y.; Loescher, A.; Janssens-Maenhout, G.; Zheng, B.; et al. A global map of emission clumps for future monitoring of fossil fuel CO2 emissions from space. Earth Syst. Sci. Data 2019, 11, 687–703. [Google Scholar] [CrossRef]
- Han, H.; Noh, Y.; Kim, Y.; Park, S.; Yoon, W.; Jang, D.; Choi, S.M.; Kim, W.B. Selective electrochemical CO2 conversion to multicarbon alcohols on highly efficient N-doped porous carbon-supported Cu catalysts. Green Chem. 2020, 22, 71–84. [Google Scholar] [CrossRef]
- Lian, Y.; Fang, T.F.; Zhang, Y.H.; Liu, B.; Li, J.L. Hydrogenation of CO2 to alcohol species over Co@Co3O4/C-N catalysts. J. Catal. 2019, 379, 46–51. [Google Scholar] [CrossRef]
- Wang, X.N.; Gao, C.; Low, J.X.; Mao, K.K.; Duan, D.L.; Chen, S.M.; Ye, R.; Qiu, Y.R.; Ma, J.; Zheng, X.S.; et al. Efficient photoelectrochemical CO2 conversion for selective acetic acid production. Sci. Bull. 2021, 66, 1296–1304. [Google Scholar] [CrossRef]
- Frogneux, X.; von Wolff, N.; Thuery, P.; Lefevre, G.; Cantat, T. CO2 Conversion into Esters by Fluoride-Mediated Carboxylation of Organosilanes and Halide Derivatives. Chem. Eur. J 2016, 22, 2930–2934. [Google Scholar]
- Lee, H.J.; Choi, J.; Lee, S.M.; Um, Y.; Sim, S.J.; Kim, Y.; Woo, H.M. Photosynthetic CO2 Conversion to Fatty Acid Ethyl Esters (FAEEs) Using Engineered Cyanobacteria. J. Agric. Food Chem. 2017, 65, 1087–1092. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Darensbourg, D.J. Carbon dioxide-based functional polycarbonates: Metal catalyzed copolymerization of CO2 and epoxides. Coord. Chem. Rev. 2018, 372, 85–100. [Google Scholar] [CrossRef]
- Chang, K.; Zhang, H.C.; Cheng, M.J.; Lu, Q. Application of ceria in CO2 conversion catalysis. ACS Catal. 2020, 10, 613–631. [Google Scholar] [CrossRef]
- Guo, Y.; Qian, C.; Wu, Y.L.; Liu, J.; Zhang, X.D.; Wang, D.D.; Zhao, Y.L. Porous catalytic membranes for CO2 conversion. J. Energy Chem. 2021, 63, 74–86. [Google Scholar] [CrossRef]
- Gupta, A.K.; Guha, N.; Krishnan, S.; Mathur, P.; Rai, D.K. A Three-Dimensional Cu(II)-MOF with Lewis acid-base dual functional sites for Chemical Fixation of CO2 via Cyclic Carbonate Synthesis. J. CO2 Util. 2020, 39, 101173. [Google Scholar] [CrossRef]
- Wu, X.; North, M. A Bimetallic Aluminium(Salphen) Complex for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. ChemSusChem 2017, 10, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Melendez, D.O.; Lara-Sanchez, A.; Martinez, J.; Wu, X.; Otero, A.; Castro-Osma, J.A.; North, M.; Rojas, R.S. Amidinate Aluminium Complexes as Catalysts for Carbon Dioxide Fixation into Cyclic Carbonates. ChemCatChem 2018, 10, 2271–2277. [Google Scholar] [CrossRef]
- Wei, F.; Tang, J.; Zuhra, Z.; Wang, S.S.; Wang, X.X.; Wang, X.F.; Xie, G.Q. [M(Me6Tren)X] X complex as efficacious bifunctional catalyst for CO2 cycloaddition: The synergism of the metal and halogen ions. J. CO2 Util. 2022, 61, 102048. [Google Scholar] [CrossRef]
- Perez-Sena, W.Y.; Eranen, K.; Kumar, N.; Estel, L.; Leveneur, S.; Salmi, T. New insights into the cocatalyst-free carbonation of vegetable oil derivatives using heterogeneous catalysts. J. CO2 Util. 2022, 57, 101879. [Google Scholar] [CrossRef]
- Hernandez, E.; Santiago, R.; Belinchon, A.; Vaquerizo, G.M.; Moya, C.; Navarro, P.; Palomar, J. Universal and low energy-demanding platform to produce propylene carbonate from CO2 using hydrophilic ionic liquids. Sep. Purif. Technol. 2022, 295, 121273. [Google Scholar] [CrossRef]
- He, M.N.; Su, C.C.; Peebles, C.; Zhang, Z.C. The Impact of Different Substituents in Fluorinated Cyclic Carbonates in the Performance of High Voltage Lithium-Ion Battery Electrolyte. J. Electrochem. Soc. 2021, 168, 010505. [Google Scholar] [CrossRef]
- Cristofol, A.; Bohmer, C.; Kleij, A.W. Formal Synthesis of Indolizidine and Quinolizidine Alkaloids from Vinyl Cyclic Carbonates. Chem. Eur. J. 2019, 25, 15055–15058. [Google Scholar] [CrossRef]
- Yu, W.; Maynard, E.; Chiaradia, V.; Arno, M.C.; Dove, A.P. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem. Rev. 2021, 121, 10865–10907. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wei, F.; Ding, S.J.; Wang, X.X.; Xie, G.Q.; Fan, H.B. Azo-Functionalized Zirconium-Based Metal-Organic Polyhedron as an Efficient Catalyst for CO2 Fixation with Epoxides. Chem. Eur. J. 2021, 27, 12890–12899. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, G.Q.; Liu, Y.; Wu, D.S.; Hu, X.B.; Zhang, Z.B. Metal-free imidazolium hydrogen carbonate ionic liquids as bifunctional catalysts for the one-pot synthesis of cyclic carbonates from olefins and CO2. Green Chem. 2019, 21, 3834–3838. [Google Scholar] [CrossRef]
- Song, H.B.; Wang, Y.J.; Xiao, M.; Liu, L.; Liu, Y.L.; Liu, X.F.; Gai, H.J. Design of Novel Poly(ionic liquids) for the Conversion of CO2 to Cyclic Carbonates under Mild Conditions without Solvent. ACS Sustain. Chem. Eng. 2019, 7, 9489–9497. [Google Scholar] [CrossRef]
- Della Monica, F.; Buonerba, A.; Paradiso, V.; Milione, S.; Grassi, A.; Capacchione, C. OSSO-type Fe(III) metallate as single-component catalyst for the CO2 cycloaddition to epoxides. Adv. Synth. Catal. 2019, 361, 283–288. [Google Scholar] [CrossRef]
- Fu, X.Y.; Jing, X.Y.; Jin, L.L.; Zhang, L.L.; Zhang, X.F.; Hu, B.; Jing, H.W. Chiral basket-handle porphyrin-Co complexes for the catalyzed asymmetric cycloaddition of CO2 to epoxides. Chin. J. Catal. 2018, 39, 997–1003. [Google Scholar] [CrossRef]
- Damiano, C.; Sonzini, P.; Cavalleri, M.; Manca, G.; Gallo, E. The CO2 cycloaddition to epoxides and aziridines promoted by porphyrin-based catalysts. Inorg. Chim. Acta 2022, 540, 121065. [Google Scholar] [CrossRef]
- Guo, Y.C.; Chen, W.J.; Feng, L.; Fan, Y.C.; Liang, J.S.; Wang, X.M.; Zhang, X. Greenery-inspired nanoengineering of bamboo-like hierarchical porous nanotubes with spatially organized bifunctionalities for synergistic photothermal catalytic CO2 fixation. J. Mater. Chem. A 2022, 10, 12418–12428. [Google Scholar] [CrossRef]
- Yu, K.; Puthiaraj, P.; Ahn, W.S. One-pot catalytic transformation of olefins into cyclic carbonates over an imidazolium bromide-functionalized Mn(III)-porphyrin metal-organic framework. Appl. Catal. B 2020, 273, 119059. [Google Scholar] [CrossRef]
- Naveen, K.; Ji, H.; Kim, T.S.; Kim, D.; Cho, D.H. C3-symmetric zinc complexes as sustainable catalysts for transforming carbon dioxide into mono- and multi-cyclic carbonates. Appl. Catal. B 2021, 280, 119395. [Google Scholar] [CrossRef]
- Balas, M.; Beaudoin, S.; Proust, A.; Launay, F.; Villanneau, R. Advantages of Covalent Immobilization of Metal-Salophen on Amino-Functionalized Mesoporous Silica in Terms of Recycling and Catalytic Activity for CO2 Cycloaddition onto Epoxides. Eur. J. Inorg. Chem. 2021, 2021, 1581–1591. [Google Scholar] [CrossRef]
- Jayakumar, S.; Li, H.; Tao, L.; Li, C.Z.; Liu, L.N.; Chen, J.; Yang, Q.H. Cationic Zn-Porphyrin Immobilized in Mesoporous Silicas as Bifunctional Catalyst for CO2 Cycloaddition Reaction under Cocatalyst Free Conditions. ACS Sustain. Chem. Eng. 2018, 6, 9237–9245. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.Y.; Sun, K.H.; Zhao, S.F.; Kim, Y.D.; Yang, Y.P.; Liu, Z.Y.; Peng, Z.K. Identification of the Encapsulation Effect of Heteropolyacid in the Si-Al Framework toward Benzene Alkylation. ACS Catal. 2022, 12, 4765–4776. [Google Scholar] [CrossRef]
- Zhang, S.F.; Zhang, B.; Liang, H.J.; Liu, Y.Q.; Qiao, Y.; Qin, Y. Encapsulation of Homogeneous Catalysts in Mesoporous Materials Using Diffusion-Limited Atomic Layer Deposition. Angew. Chem. Int. Ed. 2018, 57, 1091–1095. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Chuah, C.Y.; Bae, T.H. Polyamine-appended porous organic copolymers with controlled structural properties for enhanced CO2 capture. ACS Sustain. Chem. Eng. 2021, 9, 2017–2026. [Google Scholar] [CrossRef]
- Zhang, F.; Bulut, S.; Shen, X.J.; Dong, M.H.; Wang, Y.Y.; Cheng, X.M.; Liu, H.Z.; Han, B.X. Halogen-free fixation of carbon dioxide into cyclic carbonates via bifunctional organocatalysts. Green Chem. 2021, 23, 1147–1153. [Google Scholar] [CrossRef]
- Dai, Z.F.; Sun, Q.; Liu, X.L.; Bian, C.Q.; Wu, Q.M.; Pan, S.X.; Wang, L.; Meng, X.J.; Deng, F.; Xiao, F.S. Metalated porous porphyrin polymers as efficient heterogeneous catalysts for cycloaddition of epoxides with CO2 under ambient conditions. J. Catal. 2016, 338, 202–209. [Google Scholar] [CrossRef]
- Zheng, Y.T.; Wang, X.Q.; Liu, C.; Yu, B.Q.; Li, W.L.; Wang, H.L.; Sun, T.T.; Jiang, J.Z. Triptycene-supported bimetallic salen porous organic polymers for high efficiency CO2 fixation to cyclic carbonates. Inorg. Chem. Front. 2021, 8, 2880–2888. [Google Scholar] [CrossRef]
- Kong, L.Y.; Han, S.L.; Zhang, T.; He, L.C.; Zhou, L.S. Developing hierarchical porous organic polymers with tunable nitrogen base sites via theoretical calculation-directed monomers selection for efficient capture and catalytic utilization of CO2. Chem. Eng. J. 2021, 420, 127621. [Google Scholar] [CrossRef]
- Zhang, W.W.; Ping, R.; Lu, X.Y.; Shi, H.B.; Liu, F.S.; Ma, J.J.; Liu, M.S. Rational design of Lewis acid-base bifunctional nanopolymers with high performance on CO2/epoxide cycloaddition without a cocatalyst. Chem. Eng. J. 2021, 420, 127621. [Google Scholar] [CrossRef]
- Puthiaraj, P.; Ravi, S.; Yu, K.; Ahn, W.S. CO2 adsorption and conversion into cyclic carbonates over a porous ZnBr2-grafted N-heterocyclic carbene-based aromatic polymer. Appl. Catal. B 2019, 251, 195–205. [Google Scholar] [CrossRef]
- Chen, Y.J.; Ren, Q.G.; Zeng, X.J.; Tao, L.M.; Zhou, X.T.; Ji, H.B. Sustainable synthesis of multifunctional porous metalloporphyrin polymers for efficient carbon dioxide transformation under mild. Chem. Eng. Sci. 2021, 232, 116380. [Google Scholar] [CrossRef]
- Ma, D.X.; Li, J.X.; Liu, K.; Li, B.Y.; Li, C.G.; Shi, Z. Di-ionic multifunctional porous organic frameworks for efficient CO2 fixation under mild and co-catalyst free conditions. Green Chem. 2018, 20, 5285–5291. [Google Scholar] [CrossRef]
- Liu, X.Y.; Yang, Y.Y.; Chen, M.; Xu, W.; Chen, K.C.; Luo, R.C. High-Surface-Area Metalloporphyrin-Based Porous Ionic Polymers by the Direct Condensation Strategy for Enhanced CO2 Capture and Catalytic Conversion into Cyclic Carbonates. ACS Appl. Mater. Interfaces 2023, 15, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T.; Liang, J.; Huang, Y.B.; Cao, R. A bifunctional cationic porous organic polymer based on a Salen-(Al) metalloligand for the cycloaddition of carbon dioxide to produce cyclic carbonates. Chem. Commun. 2016, 52, 13288–13291. [Google Scholar] [CrossRef]
- Li, J.; Han, Y.L.; Ji, T.; Wu, N.H.; Lin, H.; Jiang, J.; Zhu, J.H. Porous Metallosalen Hypercrosslinked Ionic Polymers for Cooperative CO2 Cycloaddition Conversion. Ind. Eng. Chem. Res. 2020, 59, 676–684. [Google Scholar] [CrossRef]
- Chen, Y.J.; Luo, R.C.; Xu, Q.H.; Jiang, J.; Zhou, X.T.; Ji, H.B. Charged Metalloporphyrin Polymers for Cooperative Synthesis of Cyclic Carbonates from CO2 under Ambient Conditions. ChemSusChem 2017, 10, 2534–2541. [Google Scholar] [CrossRef]
Entry | Catalyst | Amount of Catalyst | Solvent | Yield (%) c | Selectivity (%) c |
---|---|---|---|---|---|
1 | PBTP | 40 mg | none | 2 | >99 |
2 | PBTP-Me6Tren | 40 mg | none | 32.8 | >99 |
3 | POP-Ni | 40 mg | none | 51.9 | >99 |
4 | POP-Ni | 40 mg | DMSO | 58.4 | >99 |
5 | POP-Ni | 40 mg | DMA | 69.6 | >99 |
6 | POP-Ni | 40 mg | DMF | 78.5 | >99 |
7 | POP-Ni | 80 mg | DMF | 97.5 | >99 |
8 b [15] | [Ni(Me6Tren)Br]Br | 22 mg | none | 98.9 | >99 |
Entry | Catalyst | Cocatalyst | CO2 (Mpa) | Temp. (°C) | Time (h) | Yield (%) | Number of Recycling (yield, %) a | Ref. |
---|---|---|---|---|---|---|---|---|
1 | Co/POP-TPP | TBAB | 0.1 | 29 | 24 | 95.6 | 18 (93.6) | [36] |
2 | Zn/TPA-TCIF(BD) | TBAB | 0.5 | 40 | 10 | 98.8 | 10 (84) | [37] |
3 | Co@H-POP-4,4’-bipyridine | TBAB | 0.3 | 30 | 48 | 97.1 | none | [38] |
4 | Py-Zn@IPOPI | none | 2 | 120 | 6 | 96 | 5 (94) | [39] |
5 | NHC-CAP-1(Zn2+) | none | 2 | 100 | 3 | 97 | 10 (95) | [40] |
6 | ZnTPP/QA-azo-PiP1 | none | 1 | 80 | 12 | 99 | 7 (92) | [41] |
7 | POF-Zn2+-I- | none | 1 | 60 | 8 | 92.2 | none | [42] |
8 | AlPor−PIP−Br | none | 0.5 | 40 | 24 | 98 | 6 (97) | [43] |
9 | Al-CPOP | none | 0.1 | 120 | 24 | 95.0 | 5 (95) | [44] |
10 | Co-HIP | none | 0.1 | 80 | 20 | 96 | 5 (95) | [45] |
11 | POP-Ni | none | 0.1 | 80 | 24 | 97.5 | 6 (91.5) | This work |
Entry | Epoxide | Product | Yield (%) b | Selectivity (%) b |
---|---|---|---|---|
1 | 97.5 | >99 | ||
2 | 95.7 | >99 | ||
3 | 62.7 | > 99 | ||
4 | 48.0 | 89.4 | ||
5 | 49.2 | 90.3 | ||
6 | 35.6 | 91.3 | ||
7 | 51.5 | 93.4 | ||
8 | 48.2 | 87.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, F.; Qiu, J.; Zeng, Y.; Liu, Z.; Wang, X.; Xie, G. A Novel POP-Ni Catalyst Derived from PBTP for Ambient Fixation of CO2 into Cyclic Carbonates. Materials 2023, 16, 2132. https://doi.org/10.3390/ma16062132
Wei F, Qiu J, Zeng Y, Liu Z, Wang X, Xie G. A Novel POP-Ni Catalyst Derived from PBTP for Ambient Fixation of CO2 into Cyclic Carbonates. Materials. 2023; 16(6):2132. https://doi.org/10.3390/ma16062132
Chicago/Turabian StyleWei, Fen, Jiaxiang Qiu, Yanbin Zeng, Zhimeng Liu, Xiaoxia Wang, and Guanqun Xie. 2023. "A Novel POP-Ni Catalyst Derived from PBTP for Ambient Fixation of CO2 into Cyclic Carbonates" Materials 16, no. 6: 2132. https://doi.org/10.3390/ma16062132
APA StyleWei, F., Qiu, J., Zeng, Y., Liu, Z., Wang, X., & Xie, G. (2023). A Novel POP-Ni Catalyst Derived from PBTP for Ambient Fixation of CO2 into Cyclic Carbonates. Materials, 16(6), 2132. https://doi.org/10.3390/ma16062132