3D Printing of CNT- and YSZ-Added Dental Resin-Based Composites by Digital Light Processing and Their Mechanical Properties
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuang, X.; Wu, J.; Chen, K.; Zhao, Z.; Ding, Z.; Hu, F.; Fang, D.; Qi, H.J. Grayscale Digital Light Processing 3D Printing for Highly Functionally Graded Materials. Sci. Adv. 2019, 5, eaav5790. [Google Scholar] [CrossRef] [Green Version]
- Jockusch, J.; Özcan, M. Additive Manufacturing of Dental Polymers: An Overview on Processes, Materials and Applications. Dent. Mater. J. 2020, 39, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Monzón, M.; Ortega, Z.; Hernández, A.; Paz, R.; Ortega, F. Anisotropy of Photopolymer Parts Made by Digital Light Processing. Materials 2017, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Wang, L.; Dunn, C.K.; Kuang, X.; Duan, F.; Zhang, Z.; Qi, H.J.; Wang, T. Digital Light Processing 3D Printing of Conductive Complex Structures. Addit. Manuf. 2017, 18, 74–83. [Google Scholar] [CrossRef]
- Li, S.; Duan, W.; Zhao, T.; Han, W.; Wang, L.; Dou, R.; Wang, G. The Fabrication of SiBCN Ceramic Components from Preceramic Polymers by Digital Light Processing (DLP) 3D Printing Technology. J. Eur. Ceram. Soc. 2018, 38, 4597–4603. [Google Scholar] [CrossRef]
- Li, F.; Ji, X.; Wu, Z.; Qi, C.; Xian, Q.; Sun, B. Digital Light Processing 3D Printing of Ceramic Shell for Precision Casting. Mater. Lett. 2020, 276, 2–5. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, L.; Meng, X.; Yu, F.; Yang, N.; Liu, S. Digital Light Processing-Stereolithography Three-Dimensional Printing of Yttria-Stabilized Zirconia. Ceram. Int. 2020, 46, 8745–8753. [Google Scholar] [CrossRef]
- Mathew, E.; Pitzanti, G.; Gomes Dos Santos, A.L.; Lamprou, D.A. Optimization of Printing Parameters for Digital Light Processing 3d Printing of Hollow Microneedle Arrays. Pharmaceutics 2021, 13, 1837. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Ahn, J.S.; Lim, Y.J.; Kwon, H.B.; Kim, M.J. Effect of Post-Curing Time on the Color Stability and Related Properties of a Tooth-Colored 3D-Printed Resin Material. J. Mech. Behav. Biomed. Mater. 2022, 126, 104993. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Xie, D.; Liu, F.; Shen, L.; Tian, Z.; Yang, Y. Preparation and Properties of Functional Materials Based on Digital Light Processing 3D Printing. J. Nanomater. 2022, 2022, 4136072. [Google Scholar] [CrossRef]
- Lee, H.; Son, K.; Lee, D.H.; Kim, S.Y.; Lee, K.B. Comparison of Wear of Interim Crowns in Accordance with the Build Angle of Digital Light Processing 3D Printing: A Preliminary In Vivo Study. Bioengineering 2022, 9, 417. [Google Scholar] [CrossRef] [PubMed]
- Oei, J.D.; Mishriky, M.; Barghi, N.; Rawls, H.R.; Cardenas, H.L.; Aguirre, R.; Whang, K. Development of a Low-Color, Color Stable, Dual Cure Dental Resin. Dent. Mater. 2013, 29, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.D.; Giuseppetti, A.A.; Hoffman, K.H. Chipping Fracture Resistance of Dental CAD/CAM Restorative Materials: Part I-Procedures and Results. Dent. Mater. 2014, 30, e99–e111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Sun, B.; Jiang, X.; Aldeyab, S.S.; Zhang, Q.; Zhu, M. Mechanical Properties of Dental Resin/Composite Containing Urchin-like Hydroxyapatite. Dent. Mater. 2014, 30, 1358–1368. [Google Scholar] [CrossRef]
- Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.; Ferracane, J.L. Academy of Dental Materials guidance-Resin composites: Part-I Mechanical Properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, H.; Kim, J.W.; Kim, J.H. Cytocompatibility of 3D Printed Dental Materials for Temporary Restorations on Fibroblasts. BMC Oral Health 2020, 20, 157. [Google Scholar] [CrossRef]
- Yao, L.; Hu, P.; Zhao, Y.; Lue, Q.T.; Nie, Z.; Yan, M.; He, Z. Handcrafted Digital Light Processing Apparatus for Additively Manufacturing Oral-Prosthesis Targeted Nano-Ceramic Resin Composites. Sci. Eng. Compos. Mater. 2021, 28, 315–326. [Google Scholar] [CrossRef]
- Ellakany, P.; Fouda, S.M.; Mahrous, A.A.; AlGhamdi, M.A.; Aly, N.M. Influence of CAD/CAM Milling and 3D-Printing Fabrication Methods on the Mechanical Properties of 3-Unit Interim Fixed Dental Prosthesis after Thermo-Mechanical Aging Process. Polymers 2022, 14, 4103. [Google Scholar] [CrossRef]
- Cho, K.; Rajan, G.; Farrar, P.; Prentice, L.; Prusty, B.G. Dental Resin Composites: A Review on Materials to Product Realizations. Compos. Part B Eng. 2022, 230, 109495. [Google Scholar] [CrossRef]
- German, M.J. Developments in Resin-Based Composites. Br. Dent. J. 2022, 232, 638–643. [Google Scholar] [CrossRef]
- Vermudt, A.; Kuga, M.C.; Besegato, J.F.; Oliveira, E.C.G.D.; Leandrin, T.P.; Só, M.V.R.; Moraes, J.C.S.; Pereira, J.R. Effect of Curing Modes on the Mechanical Properties of Commercial Dental Resin-Based Composites: Comparison between Different LEDs and Microwave Units. Polymers 2022, 14, 4020. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Sayed, M.E.; Shetty, M.; Alqahtani, S.M.; Al Wadei, M.H.D.; Gupta, S.G.; Othman, A.A.A.; Alshehri, A.H.; Alqarni, H.; Mobarki, A.H.; et al. Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis. Polymers 2022, 14, 2691. [Google Scholar] [CrossRef] [PubMed]
- Crenn, M.J.; Rohman, G.; Fromentin, O.; Benoit, A. Polylactic Acid as a Biocompatible Polymer for Three-Dimensional Printing of Interim Prosthesis: Mechanical Characterization. Dent. Mater. J. 2022, 41, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, E.T.P.; Campos, T.M.B.; Piza, M.M.T.; Gutierrez, E.; Lopes, A.C.O.; Witek, L.; Coelho, P.G.; Celestrino, M.; Carvalho, L.F.D.; Benalcázar Jalkh, E.B.; et al. Temporary Materials Used in Prosthodontics: The Effect of Composition, Fabrication Mode, and Aging on Mechanical Properties. J. Mech. Behav. Biomed. Mater. 2022, 133, 105333. [Google Scholar] [CrossRef]
- Xu, H.H.K.; Sun, L.; Weir, M.D.; Takagi, S.; Chow, L.C.; Hockey, B. Effects of incorporating nanosized calcium phosphate particles on properties of whisker-reinforced dental composites. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Curtis, A.R.; Palin, W.M.; Fleming, G.J.P.; Shortall, A.C.C.; Marquis, P.M. The mechanical properties of nano filled resin-based composites: Characterizing discrete filler particles and agglomerates using a micromanipulation technique. Dent. Mater. 2009, 25, 180–187. [Google Scholar] [CrossRef]
- Jun, S.K.; Kim, D.A.; Goo, H.J.; Lee, H.H. Investigation of the correlation between the different mechanical properties of resin composites. Dent. Mater. J. 2013, 32, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Randolph, L.D.; Palin, W.M.; Leloup, G.; Leprince, J.G. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent. Mater. 2016, 32, 1586–1599. [Google Scholar] [CrossRef]
- Heintze, S.D.; Ilie, N.; Hickel, R.; Reis, A.; Loguercio, A.; Rousson, V. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials—A systematic review. Dent. Mater. 2017, 33, e101–e114. [Google Scholar] [CrossRef]
- Yang, D.L.; Sun, Q.; Niu, H.; Wang, R.L.; Wang, D.; Wang, J.X. The Properties of Dental Resin Composites Reinforced with Silica Colloidal Nanoparticle Clusters: Effects of Heat Treatment and Filler Composition. Compos. Part B Eng. 2020, 186, 107791. [Google Scholar] [CrossRef]
- Cho, K.; Yasir, M.; Jung, M.; Willcox, M.D.P.; Stenzel, M.H.; Rajan, G.; Farrar, P.; Prusty, B.G. Hybrid Engineered Dental Composites by Multiscale Reinforcements with Chitosan-Integrated Halloysite Nanotubes and S-Glass Fibers. Compos. Part B Eng. 2020, 202, 108448. [Google Scholar] [CrossRef]
- Li, Q.; Tang, C.; Liu, F.; He, J. The Physiochemical Properties of Dental Resin Composites Reinforced with Milled E-Glass Fibers. Silicon 2018, 10, 1999–2007. [Google Scholar] [CrossRef]
- Yang, D.L.; Cui, Y.N.; Sun, Q.; Liu, M.; Niu, H.; Wang, J.X. Antibacterial Activity and Reinforcing Effect of SiO2-ZnO Complex Cluster Fillers for Dental Resin Composites. Biomater. Sci. 2021, 9, 1795–1804. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Chen, C.; Chen, B.; Shen, J.; Zhang, H.; Xie, H. Effects of Hydrothermal Aging, Thermal Cycling, and Water Storage on the Mechanical Properties of a Machinable Resin-Based Composite Containing Nano-Zirconia Fillers. J. Mech. Behav. Biomed. Mater. 2020, 102, 103522. [Google Scholar] [CrossRef] [PubMed]
- Shariatinia, Z. Applications of Carbon Nanotubes. In Handbook of Carbon-Based Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 321–364. [Google Scholar] [CrossRef]
- Castro-Rojas, M.A.; Vega-Cantu, Y.I.; Cordell, G.A.; Rodriguez-Garcia, A. Dental Applications of Carbon Nanotubes. Molecules 2021, 26, 4423. [Google Scholar] [CrossRef]
- Khan, A.A.; Al Kheraif, A.A.; Syed, J.; Divakar, D.D.; Matinlinna, J.P. Enhanced Resin Zirconia Adhesion with Carbon Nanotubes-Infused Silanes: A Pilot Study. J. Adhes. 2018, 94, 167–180. [Google Scholar] [CrossRef]
- Sahmani, S.; Fattahi, A.M. Size-dependent Nonlinear Instability of Shear Deformable Cylindrical Nanopanales Subjected to Axial Compression in Thermal Environments. Microsyst. Technol. 2017, 23, 4717–4731. [Google Scholar] [CrossRef]
- Khan, A.A.; Mirza, E.H.; Syed, J.; Al Kheraif, A.A.; Mehmood, A.; Pekka, K.; Alfotawi, R. Single and Multi_walled Carbon Nanotube Fillers in Poly(methyl methacrylate)-Based Implant Material. J. Biomater. Tissue Eng. 2017, 7, 798–806. [Google Scholar] [CrossRef]
- Tebeta, R.T.; Fattahi, A.M.; Ahmed, N.A. Experimental and Numerical Study on HDPE/SWCNT Nanocomposite Elastic Properties Considering the Processing Techniques Effect. Microsyst. Technol. 2020, 26, 2423–2441. [Google Scholar] [CrossRef]
- Iqbal, A.; Saeed, A.; Ul-Hamid, A. A Review Featuring the Fundamentals and Advancements of Polymer/CNT Nanocomposite Application in Aerospace Industry. Polym. Bull. 2021, 78, 539–557. [Google Scholar] [CrossRef]
- Arrigo, R.; Malucelli, G. Rheological Behavior of Polymer/Carbon Nanotube Composites: An Overview. Materials 2020, 13, 2771. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kazemi, Y.; Wang, S.; Hamidinejad, M.; Mahmud, M.B.; Pötschke, P.; Park, C.B. Enhancing the Electrical Conductivity of PP/CNT Nanocomposites through Crystal-Induced Volume Exclusion Effect with a Slow Cooling Rate. Compos. Part B Eng. 2020, 183, 107663. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Cao, X.; Gong, S.; Xie, Z.; Li, T.; Wu, C.; Zhu, Z.; Li, Z. Effect of Nano-Scale Cu Particles on the Electrical Property of CNT/Polymer Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106325. [Google Scholar] [CrossRef]
- Chen, X.; Peng, F.; Wang, C.; Zhou, H.; Lin, X.; Liu, W.; Zhang, A. Improving the Flame Retardancy and Mechanical Properties of Epoxy Composites Significantly with a Low-Loading CNT-Based Hierarchical Hybrid Decorated with Reactive Hyperbranched Polyphosphoramide. Appl. Surf. Sci. 2022, 576, 151765. [Google Scholar] [CrossRef]
- Asthana, A.; Srivastava, V. Analysis of Mechanical Strength and Young’s Modulus of Ultrasonically Functionalised CNT-Epoxy Composites. Adv. Mater. Process. Technol. 2022, 8, 1105–1112. [Google Scholar] [CrossRef]
- de Souza Leão, R.; de Moraes, S.L.D.; de Luna Gomes, J.M.; Lemos, C.A.A.; da Silva Casado, B.G.; do Egito Vasconcelos, B.C.; Pellizzer, E.P. Influence of Addition of Zirconia on PMMA: A Systematic Review. Mater. Sci. Eng. C 2020, 106, 110292. [Google Scholar] [CrossRef] [PubMed]
- Zidan, S.; Silikas, N.; Alhotan, A.; Haider, J.; Yates, J. Investigating the Mechanical Properties of ZrO2-Impregnated PMMA Nanocomposite for Denture-Based Applications. Materials 2019, 12, 1344. [Google Scholar] [CrossRef] [Green Version]
- Jang, B.K.; Lee, J.H.; Fisher, C.A.J. Mechanical Properties and Phase-Transformation Behavior of Carbon Nanotube-Reinforced Yttria-Stabilized Zirconia Composites. Ceram. Int. 2021, 47, 35287–35293. [Google Scholar] [CrossRef]
- Choudhary, N.; Sharma, V.; Kumar, P. Reinforcement of Polylactic Acid with Bioceramics (Alumina and YSZ Composites) and Their Thermomechanical and Physical Properties for Biomedical Application. J. Vinyl Addit. Technol. 2021, 27, 612–625. [Google Scholar] [CrossRef]
- Chavan, C.; Bhajantri, R.F.; Cyriac, V.; Ismayil; Bulla, S.; Ravikumar, H.B.; Raghavendra, M.; Sakthipandi, K. Exploration of Free Volume Behavior and Ionic Conductivity of PVA: X (x = 0, Y2O3, ZrO2, YSZ) Ion-Oxide Conducting Polymer Ceramic Composites. J. Non. Cryst. Solids 2022, 590, 121696. [Google Scholar] [CrossRef]
- Berry, A.M. A Comparison of Listerine® and Sodium Bicarbonate Oral Cleansing Solutions on Dental Plaque Colonisation and Incidence of Ventilator Associated Pneumonia in Mechanically Ventilated Patients: A Randomised Control Trial. Intensive Crit. Care Nurs. 2013, 29, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Vlachojannis, C.; Chrubasik-Hausmann, S.; Hellwig, E.; Al-Ahmad, A. A Preliminary Investigation on the Antimicrobial Activity of Listerine®, Its Components, and of Mixtures Thereof. Phyther. Res. 2015, 29, 1590–1594. [Google Scholar] [CrossRef] [PubMed]
- Della Bona, A.; Pecho, O.E.; Ghinea, R.; Cardona, J.C.; Pérez, M.M. Colour Parameters and Shade Correspondence of CAD-CAM Ceramic Systems. J. Dent. 2015, 43, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pithon, M.M.; Sant’Anna, L.I.D.A.; Baião, F.C.S.; Santos, R.L.D.; Coqueiro, R.D.S.; Maia, L.C. Assessment of the Effectiveness of Mouthwashes in Reducing Cariogenic Biofilm in Orthodontic Patients: A Systematic Review. J. Dent. 2015, 43, 297–308. [Google Scholar] [CrossRef]
- Alpkilic, D.S.; Ongul, D.; Isler Deger, S. Stainability of Different Ceramic Materials against Mouth Rinses and Effect of Polishing after Staining. J. Prosthet. Dent. 2021, 126, 686.e1–686.e7. [Google Scholar] [CrossRef]
- Morais Sampaio, G.A.D.; Rangel Peixoto, L.; de Vasconcelos Neves, G.; Nascimento Barbosa, D. do Effect of Mouthwashes on Color Stability of Composite Resins: A Systematic Review. J. Prosthet. Dent. 2021, 126, 386–392. [Google Scholar] [CrossRef]
- Akama, Y.; Nagamatsu, Y.; Ikeda, H.; Nakao-Kuroishi, K.; Kometani-Gunjigake, K.; Kawamoto, T.; Shimizu, H. Applicability of Neutral Electrolyzed Water for Cleaning Contaminated Fixed Orthodontic Appliances. Am. J. Orthod. Dentofac. Orthop. 2022, 161, e507–e523. [Google Scholar] [CrossRef]
UV wavelength of DLP printer: | 405 nm |
Light intensity: | 2.8 mW/cm2 |
Curing time for each layer: | 7 s |
Layer thickness: | 50 μm |
Curing time after printing: | 10 min |
Resin temperature while printing: | 25 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, M.; Raju, K.; Lee, J.; Jung, J.; Jeong, S.; Kim, J.-i.; Cho, J. 3D Printing of CNT- and YSZ-Added Dental Resin-Based Composites by Digital Light Processing and Their Mechanical Properties. Materials 2023, 16, 1873. https://doi.org/10.3390/ma16051873
Son M, Raju K, Lee J, Jung J, Jeong S, Kim J-i, Cho J. 3D Printing of CNT- and YSZ-Added Dental Resin-Based Composites by Digital Light Processing and Their Mechanical Properties. Materials. 2023; 16(5):1873. https://doi.org/10.3390/ma16051873
Chicago/Turabian StyleSon, Minhyuk, Kati Raju, Jaemin Lee, Jinsik Jung, Seik Jeong, Ji-in Kim, and Jaehun Cho. 2023. "3D Printing of CNT- and YSZ-Added Dental Resin-Based Composites by Digital Light Processing and Their Mechanical Properties" Materials 16, no. 5: 1873. https://doi.org/10.3390/ma16051873
APA StyleSon, M., Raju, K., Lee, J., Jung, J., Jeong, S., Kim, J.-i., & Cho, J. (2023). 3D Printing of CNT- and YSZ-Added Dental Resin-Based Composites by Digital Light Processing and Their Mechanical Properties. Materials, 16(5), 1873. https://doi.org/10.3390/ma16051873