Correlation-Driven Topological Transition in Janus Two-Dimensional Vanadates
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Legut, D.; Liu, X.; Lin, C.; Feng, X.; Li, Z.; Zhang, Q. Modulated Ferromagnetism and Electric Polarization Induced by Surface Vacancy in MX2 Monolayers. J. Phys. Chem. C 2022, 126, 8817–8825. [Google Scholar] [CrossRef]
- Tiwari, S.; Vanherck, J.; Van de Put, M.L.; Vandenberghe, W.G.; Sorée, B. Computing Curie temperature of two-dimensional ferromagnets in the presence of exchange anisotropy. Phys. Rev. Res. 2021, 3, 043024. [Google Scholar] [CrossRef]
- Sheng, K.; Zhang, B.; Yuan, H.-K.; Wang, Z.-Y. Strain-engineered topological phase transitions in ferrovalley 2H−RuCl2 monolayer. Phys. Rev. B 2022, 105, 195312. [Google Scholar] [CrossRef]
- Li, C.; An, Y. Tunable magnetocrystalline anisotropy and valley polarization in an intrinsic ferromagnetic Janus 2H-VTeSe monolayer. Phys. Rev. B 2022, 106, 115417. [Google Scholar] [CrossRef]
- Yin, Y.; Gong, Q.; Yi, M.; Guo, W. Emerging versatile two-dimensional MoSi2N4 family. arXiv 2022, arXiv:2211.00827. [Google Scholar]
- Islam, R.; Ghosh, B.; Autieri, C.; Chowdhury, S.; Bansil, A.; Agarwal, A.; Singh, B. Tunable spin polarization and electronic structure of bottom-up synthesized MoSi2N4 materials. Phys. Rev. B 2021, 104, L201112. [Google Scholar] [CrossRef]
- Feng, X.; Xu, X.; He, Z.; Peng, R.; Dai, Y.; Huang, B.; Ma, Y. Valley-related multiple Hall effect in monolayer VSi2P4. Phys. Rev. B 2021, 104, 075421. [Google Scholar] [CrossRef]
- Autieri, C.; Cuono, G.; Noce, C.; Rybak, M.; Kotur, K.M.; Agrapidis, C.E.; Wohlfeld, K.; Birowska, M. Limited Ferromagnetic Interactions in Monolayers of MPS3 (M = Mn and Ni). J. Phys. Chem. C 2022, 126, 6791–6802. [Google Scholar] [CrossRef]
- Basnet, R.; Kotur, K.M.; Rybak, M.; Stephenson, C.; Bishop, S.; Autieri, C.; Birowska, M.; Hu, J. Controlling magnetic exchange and anisotropy by non-magnetic ligand substitution in layered MPX3 (M = Ni, Mn; X = S, Se). Phys. Rev. Res. 2022, 4, 023256. [Google Scholar] [CrossRef]
- Liu, W.; Guo, X.; Schwartz, J.; Xie, H.; Dhale, N.U.; Sung, S.H.; Kondusamy, A.L.N.; Wang, X.; Zhao, H.; Berman, D. A three-stage magnetic phase transition revealed in ultrahigh-quality van der Waals bulk magnet CrSBr. ACS Nano 2022, 16, 15917–15926. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Taddei, K.M.; Li, S.; Liu, W.; Dhale, N.; Kadado, R.; Berman, D.; Cruz, C.D.; Lv, B. Canted antiferromagnetism in the quasi-one-dimensional iron chalcogenide BaFe2Se4. Phys. Rev. B 2020, 102, 180403. [Google Scholar] [CrossRef]
- Liu, P.; Liu, S.; Jia, M.; Yin, H.; Zhang, G.; Rena, F.; Wanga, B.; Liu, C. Strain-driven valley states and phase transitions in Janus VSiGeN4 monolayer. Appl. Phys. Lett. 2022, 121, 063103. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Zhu, J. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibertini, M.; Koperski, M.; Morpurgo, A.F.; Novoselov, K.S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Clark, G.; Klein, D.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K.; Wilson, N.; McGuire, M.; Cobden, D.; Xiao, D. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548. [Google Scholar] [CrossRef]
- Burch, K.S. Electric switching of magnetism in 2D. Nat. Nanotechnol. 2018, 13, 532. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, W.; Henriksen, E.A.; Chelikowsky, J.R.; Yang, L. Optically driven magnetic phase transition of monolayer RuCl3. Nano Lett. 2019, 19, 7673–7680. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Lin, L.; Zhou, Q.; Li, Y.; Yuan, S.; Chen, Q.; Dong, S.; Wang, J. Surface vacancy-induced switchable electric polarization and enhanced ferromagnetism in monolayer metal trihalides. Nano Lett. 2018, 18, 2943–2949. [Google Scholar] [CrossRef]
- Song, X.; Yuan, F.; Schoop, L.M. The properties and prospects of chemically exfoliated nanosheets for quantum materials in two dimensions. Appl. Phys. Rev. 2021, 8, 011312. [Google Scholar] [CrossRef]
- Jiang, S.; Xie, H.; Shan, J.; Mak, K.F. Exchange magnetostriction in two-dimensional antiferromagnets. Nat. Mater. 2020, 19, 1295–1299. [Google Scholar] [CrossRef] [PubMed]
- Mermin, N.D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133. [Google Scholar] [CrossRef]
- Lado, J.L.; Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 2017, 4, 035002. [Google Scholar] [CrossRef] [Green Version]
- Gurney, B.; Yamada, K.; Nakatani, Y.; Prejbeanu, I.-L.; Diény, B.; Pirro, P.; Hillebrands, B. Spin valve giant magnetoresistive sensor materials for hard disk drives. In Ultrathin Magnetic Structures IV; Springer: Berlin/Heidelberg, Germany, 2005; pp. 149–175. [Google Scholar]
- Prinz, G.A. Magnetoelectronics. Science 1998, 282, 1660–1663. [Google Scholar] [CrossRef]
- Kryder, M.H. Magnetic thin films for data storage. Thin Solid Films 1992, 216, 174–180. [Google Scholar] [CrossRef]
- Webster, L.; Yan, J.-A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys. Rev. B 2018, 98, 144411. [Google Scholar] [CrossRef] [Green Version]
- Singla, R.; Hackett, T.A.; Kumar, S.; Sharmad, J.; Kashyap, M.K. Curie temperature engineering in a novel 2D analog of iron ore (hematene) via strain. Nanoscale Adv. 2020, 2, 5890–5896. [Google Scholar] [CrossRef]
- Hussain, G.; Manzoor, M.; Iqbal, M.W.; Muhammad, I.; Bafekry, A.; Ullah, H.; Autieri, C. Strain modulated electronic and optical properties of laterally stitched MoSi2N4/XSi2N4 (X = W, Ti) 2D heterostructures. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 144, 115471. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Hua, C.; Yang, S.; Liu, Y.; Luo, J.; Liu, T.; Nai, J.; Tao, X. Prediction of bipolar VSi2As4 and VGe2As4 monolayers with high Curie temperature and strong magnetocrystalline anisotropy. Phys. Rev. B 2022, 106, 235401. [Google Scholar] [CrossRef]
- Hussain, G.; Cuono, G.; Islam, R.; Trajnerowicz, A.; Jureńczyk, J.; Autieri, C.; Dietl, T. Electronic and optical properties of InAs/InAs0.625Sb0.375 superlattices and their application for far-infrared detectors. J. Phys. D Appl. Phys. 2022, 55, 495301. [Google Scholar] [CrossRef]
- Dey, D.; Ray, A.; Yu, L. Intrinsic ferromagnetism and restrictive thermodynamic stability in MA2N4 and Janus VSiGeN4 monolayers. Phys. Rev. Mater. 2022, 6, L061002. [Google Scholar] [CrossRef]
- Hong, Y.-L.; Liu, Z.; Wang, L.; Zhou, T.; Ma, W.; Xu, C.; Feng, S.; Chen, L.; Chen, M.-L.; Sun, D.-M. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 2020, 369, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Cao, L. Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Appl. Phys. Lett. 2021, 118, 013106. [Google Scholar] [CrossRef]
- Bafekry, A.; Faraji, M.; Hoat, D.M.; Shahrokhi, M.; Fadlallah, M.M.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D. MoSi2N4 single-layer: A novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties. J. Phys. D Appl. Phys. 2021, 54, 155303. [Google Scholar] [CrossRef]
- Mortazavi, B.; Javvaji, B.; Shojaei, F.; Rabczuk, T.; Shapeev, A.V.; Zhuang, X. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy 2021, 82, 105716. [Google Scholar] [CrossRef]
- Jian, C.-C.; Ma, X.; Zhang, J.; Yong, X. Strained MoSi2N4 monolayers with excellent solar energy absorption and carrier transport properties. J. Phys. Chem. C 2021, 125, 15185–15193. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, L.; Liang, S.-J.; Wu, W.; Wang, G.; Lee, C.H.; Ong, W.L.; Yang, H.Y.; Ang, L.K.; Yang, S.A.; et al. Efficient Ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers. npj 2D Mater. Appl. 2021, 5, 71. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, J.; Wan, X.; Li, Q. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New J. Phys. 2021, 23, 033005. [Google Scholar] [CrossRef]
- Cui, Z.; Luo, Y.; Yu, J.; Xu, Y. Tuning the electronic properties of MoSi2N4 by molecular doping: A first principles investigation. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 134, 114873. [Google Scholar] [CrossRef]
- Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Khatibani, A.B.; Ziabari, A.; Ghergherehchi, M.; Nedaei, S.; Shayesteh, S.F.; Gogova, D. Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping. Appl. Surf. Sci. 2021, 559, 149862. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, C.; Wang, Q.; Li, J.; Yu, Y.; Xu, F.; Wang, B.; Wei, Y. Novel Two-Dimensional Layered MoSi2Z4 (Z = P, As): New Promising Optoelectronic Materials. Nanomaterials 2021, 11, 559. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Xu, Y.; Mao, B.; Liu, G.; Zhao, G.; Yang, J. Strain modulation of electronic and optical properties of monolayer MoSi2N4. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 135, 114964. [Google Scholar] [CrossRef]
- Pham, D. Electronic properties of a two-dimensional van der Waals MoGe2N4/MoSi2N4 heterobilayer: Effect of the insertion of a graphene layer and interlayer coupling. RSC Adv. 2021, 11, 28659–28666. [Google Scholar] [CrossRef]
- Yuan, G.; Cheng, Z.; Cheng, Y.; Hui, W.D.; Liu, Z.; Han, C.; Ma, X. Highly Sensitive Band Alignment of Graphene/MoSi2N4 Heterojunction via External Electric Field. ACS Appl. Electron. Mater. 2022, 4, 2897–2905. [Google Scholar] [CrossRef]
- Chen, R.; Chen, D.; Zhang, W. First-principles calculations to investigate stability, electronic and optical properties of fluorinated MoSi2N4 monolayer. Results Phys. 2021, 30, 104864. [Google Scholar] [CrossRef]
- Bafekry, A.; Faraji, M.; Stampfl, C.; Sarsari, A.; Ziabari, A.; Hieu, N.N.; Karbasizadeh, S.; Ghergherehchi, M. Band-gap engineering, magnetic behavior and Dirac-semimetal character in the MoSi2N4 nanoribbon with armchair and zigzag edges. J. Phys. D Appl. Phys. 2021, 55, 035301. [Google Scholar] [CrossRef]
- Ray, A.; Tyagi, S.; Singh, N.; Schwingenschlögl, U. Inducing Half-Metallicity in Monolayer MoSi2N4. ACS Omega 2021, 6, 30371–30375. [Google Scholar] [CrossRef]
- Ng, J.Q.; Wu, Q.; Ang, L.K.; Ang, Y.S. Tunable electronic properties and band alignments of MoSi2N4/GaN and MoSi2N4/ZnO van der Waals heterostructures. Appl. Phys. Lett. 2022, 120, 103101. [Google Scholar] [CrossRef]
- Xu, J.; Wu, Q.; Sun, Z.; Mwankemwa, N.; Zhang, W.-b.; Yang, W.-x. First-principles investigations of electronic, optical, and photocatalytic properties of Au-adsorbed MoSi2N4 monolayer. J. Phys. Chem. Solids 2022, 162, 110494. [Google Scholar] [CrossRef]
- Bafekry, A.; Stampfl, C.; Naseri, M.; Fadlallah, M.M.; Faraji, M.; Ghergherehchi, M.; Gogova, D.; Feghhi, S.A.H. Effect of electric field and vertical strain on the electro-optical properties of the MoSi2N4 bilayer: A first-principles calculation. J. Appl. Phys. 2021, 129, 155103. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, W.; Wan, X.; Zhou, J. Strain effects on monolayer MoSi2N4: Ideal strength and failure mechanism. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 131, 114753. [Google Scholar] [CrossRef]
- Hussain, G.; Asghar, M.; Iqbal, M.W.; Ullah, H.; Autieri, C. Exploring the structural stability, electronic and thermal attributes of synthetic 2D materials and their heterostructures. Appl. Surf. Sci. 2022, 590, 153131. [Google Scholar] [CrossRef]
- Islam, R.; Hussain, G.; Verma, R.; Talezadehlari, M.S.; Muhammad, Z.; Singh, B.; Autieri, C. Fast electrically switchable large gap quantum spin Hall states in MGe2Z4. arXiv 2022, arXiv:2211.06443. [Google Scholar]
- Sheoran, S.; Monga, S.; Phutela, A.; Bhattacharya, S. Coupled Spin-Valley, Rashba Effect, and Hidden Spin Polarization in WSi2N4 Family. J. Phys. Chem. Lett. 2023, 14, 1494–1503. [Google Scholar] [CrossRef]
- Islam, R.; Verma, R.; Ghosh, B.; Muhammad, Z.; Bansil, A.; Autieri, C.; Singh, B. Switchable large-gap quantum spin Hall state in the two-dimensional MSi2Z4 class of materials. Phys. Rev. B 2022, 106, 245149. [Google Scholar] [CrossRef]
- Van Thiel, T.; Brzezicki, W.; Autieri, C.; Hortensius, R.; Afanasiev, D.; Gauquelin, N.; Jannis, D.; Janssen, N.; Groenendijk, J.; Fatermans, J.; et al. Coupling charge and topological reconstructions at polar oxide interfaces. Phys. Rev. Lett. 2021, 127, 127202. [Google Scholar] [CrossRef]
- Smaili, I.; Laref, S.; Garcia, J.H.; Schwingenschlögl, U.; Roche, S.; Manchon, A. Janus monolayers of magnetic transition metal dichalcogenides as an all-in-one platform for spin-orbit torque. Phys. Rev. B 2021, 104, 104415. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Z.; Chen, J.; Wang, B. Topological properties of Xene turned by perpendicular electric field and exchange field in the presence of Rashba spin-orbit coupling. J. Phys. Condens. Matter 2022, 35, 095401. [Google Scholar] [CrossRef]
- Hussain, G.; Samad, A.; Rehman, M.U.; Cuono, G.; Autieri, C. Emergence of Rashba splitting and spin-valley properties in Janus MoGeSiP2As2 and WGeSiP2As2 monolayers. J. Magn. Magn. Mater. 2022, 563, 169897. [Google Scholar] [CrossRef]
- Dou, K.; Du, W.; He, Z.; Dai, Y.; Huang, B.; Ma, Y. Theoretical Prediction of Antiferromagnetic Skyrmion Crystal in Janus Monolayer CrSi2N2As2. ACS Nano 2023, 17, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Laref, S.; Goli, V.M.L.D.P.; Smaili, I.; Schwingenschlögl, U.; Manchon, A. Topologically stable bimerons and skyrmions in vanadium dichalcogenide Janus monolayers. arXiv 2020, arXiv:2011.07813. [Google Scholar]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Cuono, G.; Autieri, C.; Guarnaccia, G.; Avella, A.; Cuoco, M.; Forte, F.; Noce, C. Spin–orbit coupling effects on the electronic properties of the pressure-induced superconductor CrAs. Eur. Phys. J. Spec. Top. 2019, 228, 631–641. [Google Scholar] [CrossRef]
- Wadge, A.S.; Grabecki, G.; Autieri, C.; Kowalski, B.J.; Iwanowski, P.; Cuono, G.; Islam, M.F.; Canali, C.M.; Dybko, K.; Hruban, A.; et al. Electronic properties of TaAs2 topological semimetal investigated by transport and ARPES. J. Phys. Condens. Matter 2022, 34, 125601. [Google Scholar] [CrossRef]
- Li, F.; Wei, W.; Zhao, P.; Huang, B.; Dai, Y. Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe. J. Phys. Chem. Lett. 2017, 8, 5959–5965. [Google Scholar] [CrossRef]
- Yan, S.; Qiao, W.; He, X.; Guo, X.; Xi, L.; Zhong, W.; Du, Y. Enhancement of magnetism by structural phase transition in MoS2. Appl. Phys. Lett. 2015, 106, 012408. [Google Scholar] [CrossRef]
- Ominato, Y.; Fujimoto, J.; Matsuo, M. Valley-dependent spin transport in monolayer transition-metal dichalcogenides. Phys. Rev. Lett. 2020, 124, 166803. [Google Scholar] [CrossRef] [PubMed]
- Ahammed, R.; De Sarkar, A. Valley spin polarization in two-dimensional h−MN (M = Nb, Ta) monolayers: Merger of valleytronics with spintronics. Phys. Rev. B 2022, 105, 045426. [Google Scholar] [CrossRef]
- Cui, Q.; Zhu, Y.; Liang, J.; Cui, P.; Yang, H. Spin-valley coupling in a two-dimensional VSi2N4 monolayer. Phys. Rev. B 2021, 103, 085421. [Google Scholar] [CrossRef]
Material | ao (Å) | [EFM − EAFM] (eV) | Easy Axis |
VSi2P4 | 3.448 | −0.143 | Out-of-plane |
VSi2As4 | 3.592 | −0.202 | In-plane |
VSiGeP2As2 | 3.562 | −0.210 | In-plane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, G.; Fakhredine, A.; Islam, R.; Sattigeri, R.M.; Autieri, C.; Cuono, G. Correlation-Driven Topological Transition in Janus Two-Dimensional Vanadates. Materials 2023, 16, 1649. https://doi.org/10.3390/ma16041649
Hussain G, Fakhredine A, Islam R, Sattigeri RM, Autieri C, Cuono G. Correlation-Driven Topological Transition in Janus Two-Dimensional Vanadates. Materials. 2023; 16(4):1649. https://doi.org/10.3390/ma16041649
Chicago/Turabian StyleHussain, Ghulam, Amar Fakhredine, Rajibul Islam, Raghottam M. Sattigeri, Carmine Autieri, and Giuseppe Cuono. 2023. "Correlation-Driven Topological Transition in Janus Two-Dimensional Vanadates" Materials 16, no. 4: 1649. https://doi.org/10.3390/ma16041649
APA StyleHussain, G., Fakhredine, A., Islam, R., Sattigeri, R. M., Autieri, C., & Cuono, G. (2023). Correlation-Driven Topological Transition in Janus Two-Dimensional Vanadates. Materials, 16(4), 1649. https://doi.org/10.3390/ma16041649