Assigning Viscosity Values in the Glass Softening Temperature Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. DTA Measurements
2.2.2. VFT Parameters
2.2.3. Hot Stage Microscopy Measurements: Determination of Roundness and τ Values
3. Results and Discussion
3.1. DTA Measurements and VFT Parameters
3.2. T,τ,η Data Sets
3.3. Master Function η = η (T,τ)
3.4. Reliability Test of the Master Function
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ojovan, M.I. Viscous flow and the viscosity of melts and glasses. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 2012, 53, 143–150. [Google Scholar]
- Zheng, Q.J.; Mauro, J.C. Viscosity of glass-forming systems. J. Am. Ceram. Soc. 2017, 100, 6–25. [Google Scholar] [CrossRef]
- Avramov, I. Viscosity, diffusion and entropy: A novel correlation for glasses. In Book Some Thermodynamic, Structural and Behavioral Aspects of Materials Accentuating Non-Crystalline States; Šesták, J., Holeček, M., Málek., J., Eds.; Ty Publisher: Czech Republic, 2009; pp. 414–426. [Google Scholar]
- Ojovan, M.I. Viscosity and glass transition in amorphous oxides. Adv. Condens. Matter Phys. 2008, 2008, 817829. [Google Scholar] [CrossRef]
- Cable, M. 1. Classical glass technology. In Book Materials Science and Technology—Glasses and Amorphous Materials; Zarzycki, J., Ed.; Wiley-VCH Publisher: Weinheim, Germany, 1991; p. 63. [Google Scholar]
- Varshneya, A.K. Fundamentals of Inorganic Glasses; Academic Press Inc.: San Diego, CA, USA, 1994; pp. 190–194. [Google Scholar]
- Koštál, P.; Hofírek, T.; Málek, J. Viscosity measurement by thermomechanical analyzer. J. Non-Cryst. Sol. 2018, 480, 118–122. [Google Scholar] [CrossRef]
- SciGlass-Glass Property Information System. Available online: http://www.akosgmbh.de/sciglass/sciglass.htm (accessed on 8 February 2023).
- Ding, L.; Qu, C.; Yang, Y.; Wilkinson, C.J.; Lee, K.; DeCeanne, A.; Mauro, J.C. Dilatometric fragility and prediction of the viscosity curve of glass-forming liquids. J. Am. Ceram. Soc. 2020, 103, 4248–4255. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Travis, K.P.; Hand, R.J. Thermodynamic parameters of bonds in glassy materials from viscosity–temperature relationships. J. Phys. Condens. Matter 2007, 19, 415107. [Google Scholar] [CrossRef] [PubMed]
- Mauro, J.C.; Tandia, A.; Vargheese, K.D.; Mauro, Y.Z.; Smedskjaer, M.M. Accelerating the Design of Functional Glasses through Modeling. Chem. Mater. 2016, 28, 4267–4277. [Google Scholar] [CrossRef]
- Sanditov, D.S.; Ojovan, M.I. Relaxation aspects of the liquid–glass transition. Physics-Uspekhi 2019, 62, 111–130. [Google Scholar] [CrossRef]
- Mauro, J.C.; Ellison, A.J.; Allan, D.C.; Smedskjaer, M.M. Topological model for the viscosity of multicomponent glass-forming liquids. Int. J. App. Glass Sci. 2013, 4, 408–413. [Google Scholar] [CrossRef]
- Sidebottom, D.L. Connecting Glass-Forming Fragility to Network Topology. Front. Mater. 2019, 6, 144. [Google Scholar] [CrossRef]
- Hrma, P.; Kruger, A.A. High-temperature viscosity of many-component glass melts. J. Non-Cryst Sol. 2016, 437, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Lancelotti, R.F.; Cassar, D.R.; Nalin, M.; Peitl, O.; Zanotto, E.D. Is the structural relaxation of glasses controlled by equilibrium shear viscosity? J. Am. Ceram. Soc. 2021, 104, 2066–2076. [Google Scholar] [CrossRef]
- Scherer, G.W. Relaxation in Glass and Composites; John Wiley Sons, Inc.: New York, NY, USA, 1986; p. 319. [Google Scholar]
- Doss, K.; Wilkinson, C.J.; Yang, Y.; Lee, K.; Huang, L.; Mauro, J.C. Maxwell relaxation time for nonexponential α-relaxation phenomena in glassy systems. J. Am. Ceram. Soc. 2020, 103, 3590–3599. [Google Scholar] [CrossRef]
- Scherer, G.W. Chapter 3. Glass formation and relaxation. In Book Materials Science and Technology-Glasses and Amorphous Materials; Zarzycki, J., Ed.; Wiley-VCH Publisher: Weinheim, Germany, 1991; p. 142. [Google Scholar]
- Williams, G.; Watts, D.C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1970, 66, 80–85. [Google Scholar] [CrossRef]
- Williams, G.; Watts, D.C.; Dev, S.B.; North, A.M. Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1971, 67, 1323–1335. [Google Scholar] [CrossRef]
- Jarauta, A.; Ryzhakov, P.; Pons-Prats, J.; Secanell, M. An implicit surface tension model for the analysis of droplet dynamics. J. Comp. Phys. 2018, 374, 1196–1218. [Google Scholar] [CrossRef]
- Prosperetti, A. Normal-mode analysis for the oscillations of a viscous-liquid drop in an immiscible liquid. J. M´Ecanique 1980, 19, 149–182. [Google Scholar]
- Cox, E.P. A Method of Assigning Numerical and Percentage Values to the Degree of Roundness of Sand Grains. J. Paleontol. 1927, 1, 179–183. [Google Scholar]
- Martendal, C.P.; de Oliveira, A.P.N. Glass viscosity at crystallization temperature: An approach. J. Therm. Anal. Calorim. 2017, 130, 1903–1912. [Google Scholar] [CrossRef]
SiCaDF (*) | WG (#) | SG7 (#) | VG (#) | SmAS (#) | YAS (#) | VG98 (#) | SiTiFD (*) | |
---|---|---|---|---|---|---|---|---|
SiO2 | 73.3 | 72.6 | 71.7 | 68.8 | 59.8 | 58.1 | 56.7 | 32.3 |
B2O3 | 8.3 | 24.8 | 12.4 | 4.9 | ||||
Al2O3 | 2.1 | 8.6 | 0.4 | 24.7 | 20.1 | 2.6 | 2.4 | |
TiO2 | 25.0 | |||||||
Li2O | 2.6 | |||||||
Na2O | 10.8 | 13.1 | 7.4 | 6.0 | 17.5 | 32.3 | ||
CaO | 9.8 | 5.9 | 2.7 | 4.1 | ||||
BaO | 1.0 | |||||||
MgO | 3.5 | 5.6 | 1 | 2.1 | ||||
Fe2O3 | 0.2 | |||||||
Y2O3 | 21.7 | |||||||
Sm2O3 | 15.5 | |||||||
K2O | 0.5 | |||||||
ZrO | 1.0 | |||||||
P2O5 | 0.1 | |||||||
MoO3 | 1.2 |
Glass | Tg (K) | Ts (K) | Tx (K) | log(η0) | B | T0 (K) |
---|---|---|---|---|---|---|
SiCaDF | 786 (10) | 1266 | 1300 | −3.40 (2) | 5229 (52) | 441 (4) |
WG (*) | 844 (8) | 1143 | 1257 | −4.6 (2) | 4908 (384) | 516 (23) |
SG7 (*) | 878 (7) | 953 | 1037 | 0.36 (4) | 4212 (50) | 580 (3) |
VG | 742 (10) | 986 | 1009 | −7.3 (3) | 9112 (572) | 321 (28) |
SmAS | 1156 (10) | 1340 | 1419 | −5.1 (1) | 6054 (176) | 802 (10) |
YAS (*) | 1180 (7) | 1309 | 1409 | −5.3 (3) | 6342 (141) | 818 (8) |
VG98 (*) | 814 (8) | 899 | 933 (*) | −0.58 (2) | 2817 (19) | 628 (2) |
SiTiFD | 789 (5) | 1209 | 1301 | −3.51 (5) | 2600 (41) | 625 (3) |
Glass | T (K) | Log(τ) (𝛕 in s) | Log(η) (η in Pa s) |
---|---|---|---|
SiCaDF | 883 | 5.457 | 8.430 |
SiCaDF | 913 | 4.475 | 7.678 |
SiCaDF | 985 | 2.745 | 6.212 |
SiCaDF | 978 | 3.119 | 6.337 |
SiCaDF | 953 | 3.599 | 6.812 |
SiCaDF | 973 | 3.469 | 6.428 |
SiCaDF | 995 | 2.230 | 6.038 |
VV | 923 | 5.409 | 7.455 |
VV | 948 | 4.550 | 6.757 |
VV | 963 | 4.220 | 6.376 |
VV | 988 | 4.000 | 5.795 |
VV | 1023 | 2.970 | 5.078 |
VV | 1023 | 2.800 | 5.078 |
VV | 1073 | 2.093 | 4.209 |
VG | 1033 | 2.370 | 6.120 |
VG | 1013 | 2.465 | 6.496 |
VG | 993 | 3.705 | 6.910 |
VG | 973 | 4.549 | 7.348 |
SmAS | 1273 | 4.237 | 7.767 |
SmAS | 1243 | 4.970 | 8.643 |
SmAS | 1293 | 3.143 | 7.243 |
YAS | 1293 | 4.133 | 8.002 |
YAS | 1273 | 4.520 | 8.59 |
YAS | 1253 | 5.238 | 9.232 |
SiTiFD | 873 | 2.253 | 6.970 |
SiTiFD | 853 | 2.430 | 7.890 |
SiTiFD | 813 | 3.083 | 10.310 |
SiTiFD | 793 | 3.980 | 11.950 |
SiTiFD | 803 | 3.382 | 11.080 |
Glass | T (K) (*) | Log(τ) (*) (τ in s) | (^) Log(η) (η in Pa s) | (#) Log(η) (η in Pa s) | % |
---|---|---|---|---|---|
SG7 | 1023 | 4.458 | 7.862 | 6.802 | −14 |
SG7 | 1043 | 3.807 | 7.452 | 6.428 | 14 |
SG7 | 1063 | 3.790 | 7.076 | 6.482 | −9 |
SG7 | 1093 | 3.190 | 6.567 | 6.189 | −6 |
SG7 | 1113 | 3.266 | 6.259 | 6.350 | −1 |
VG98 | 913 | 3.960 | 7.294 | 7.292 | 0 |
VG98 | 933 | 3.960 | 6.647 | 6.980 | −5 |
VG98 | 943 | 3.690 | 6.354 | 6.724 | −6 |
VG98 | 953 | 3.660 | 6.08 | 6.602 | −9 |
VG98 | 973 | 2.880 | 5.578 | 6.018 | −8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, M.O.; Benedetto, F.E. Assigning Viscosity Values in the Glass Softening Temperature Range. Materials 2023, 16, 1596. https://doi.org/10.3390/ma16041596
Prado MO, Benedetto FE. Assigning Viscosity Values in the Glass Softening Temperature Range. Materials. 2023; 16(4):1596. https://doi.org/10.3390/ma16041596
Chicago/Turabian StylePrado, Miguel O., and Franco E. Benedetto. 2023. "Assigning Viscosity Values in the Glass Softening Temperature Range" Materials 16, no. 4: 1596. https://doi.org/10.3390/ma16041596
APA StylePrado, M. O., & Benedetto, F. E. (2023). Assigning Viscosity Values in the Glass Softening Temperature Range. Materials, 16(4), 1596. https://doi.org/10.3390/ma16041596