Assigning Viscosity Values in the Glass Softening Temperature Range
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. DTA Measurements
2.2.2. VFT Parameters
2.2.3. Hot Stage Microscopy Measurements: Determination of Roundness and τ Values
3. Results and Discussion
3.1. DTA Measurements and VFT Parameters
3.2. T,τ,η Data Sets
3.3. Master Function η = η (T,τ)
3.4. Reliability Test of the Master Function
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ojovan, M.I. Viscous flow and the viscosity of melts and glasses. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 2012, 53, 143–150. [Google Scholar]
- Zheng, Q.J.; Mauro, J.C. Viscosity of glass-forming systems. J. Am. Ceram. Soc. 2017, 100, 6–25. [Google Scholar] [CrossRef]
- Avramov, I. Viscosity, diffusion and entropy: A novel correlation for glasses. In Book Some Thermodynamic, Structural and Behavioral Aspects of Materials Accentuating Non-Crystalline States; Šesták, J., Holeček, M., Málek., J., Eds.; Ty Publisher: Czech Republic, 2009; pp. 414–426. [Google Scholar]
- Ojovan, M.I. Viscosity and glass transition in amorphous oxides. Adv. Condens. Matter Phys. 2008, 2008, 817829. [Google Scholar] [CrossRef]
- Cable, M. 1. Classical glass technology. In Book Materials Science and Technology—Glasses and Amorphous Materials; Zarzycki, J., Ed.; Wiley-VCH Publisher: Weinheim, Germany, 1991; p. 63. [Google Scholar]
- Varshneya, A.K. Fundamentals of Inorganic Glasses; Academic Press Inc.: San Diego, CA, USA, 1994; pp. 190–194. [Google Scholar]
- Koštál, P.; Hofírek, T.; Málek, J. Viscosity measurement by thermomechanical analyzer. J. Non-Cryst. Sol. 2018, 480, 118–122. [Google Scholar] [CrossRef]
- SciGlass-Glass Property Information System. Available online: http://www.akosgmbh.de/sciglass/sciglass.htm (accessed on 8 February 2023).
- Ding, L.; Qu, C.; Yang, Y.; Wilkinson, C.J.; Lee, K.; DeCeanne, A.; Mauro, J.C. Dilatometric fragility and prediction of the viscosity curve of glass-forming liquids. J. Am. Ceram. Soc. 2020, 103, 4248–4255. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Travis, K.P.; Hand, R.J. Thermodynamic parameters of bonds in glassy materials from viscosity–temperature relationships. J. Phys. Condens. Matter 2007, 19, 415107. [Google Scholar] [CrossRef] [PubMed]
- Mauro, J.C.; Tandia, A.; Vargheese, K.D.; Mauro, Y.Z.; Smedskjaer, M.M. Accelerating the Design of Functional Glasses through Modeling. Chem. Mater. 2016, 28, 4267–4277. [Google Scholar] [CrossRef]
- Sanditov, D.S.; Ojovan, M.I. Relaxation aspects of the liquid–glass transition. Physics-Uspekhi 2019, 62, 111–130. [Google Scholar] [CrossRef]
- Mauro, J.C.; Ellison, A.J.; Allan, D.C.; Smedskjaer, M.M. Topological model for the viscosity of multicomponent glass-forming liquids. Int. J. App. Glass Sci. 2013, 4, 408–413. [Google Scholar] [CrossRef]
- Sidebottom, D.L. Connecting Glass-Forming Fragility to Network Topology. Front. Mater. 2019, 6, 144. [Google Scholar] [CrossRef]
- Hrma, P.; Kruger, A.A. High-temperature viscosity of many-component glass melts. J. Non-Cryst Sol. 2016, 437, 17–25. [Google Scholar] [CrossRef]
- Lancelotti, R.F.; Cassar, D.R.; Nalin, M.; Peitl, O.; Zanotto, E.D. Is the structural relaxation of glasses controlled by equilibrium shear viscosity? J. Am. Ceram. Soc. 2021, 104, 2066–2076. [Google Scholar] [CrossRef]
- Scherer, G.W. Relaxation in Glass and Composites; John Wiley Sons, Inc.: New York, NY, USA, 1986; p. 319. [Google Scholar]
- Doss, K.; Wilkinson, C.J.; Yang, Y.; Lee, K.; Huang, L.; Mauro, J.C. Maxwell relaxation time for nonexponential α-relaxation phenomena in glassy systems. J. Am. Ceram. Soc. 2020, 103, 3590–3599. [Google Scholar] [CrossRef]
- Scherer, G.W. Chapter 3. Glass formation and relaxation. In Book Materials Science and Technology-Glasses and Amorphous Materials; Zarzycki, J., Ed.; Wiley-VCH Publisher: Weinheim, Germany, 1991; p. 142. [Google Scholar]
- Williams, G.; Watts, D.C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1970, 66, 80–85. [Google Scholar] [CrossRef]
- Williams, G.; Watts, D.C.; Dev, S.B.; North, A.M. Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1971, 67, 1323–1335. [Google Scholar] [CrossRef]
- Jarauta, A.; Ryzhakov, P.; Pons-Prats, J.; Secanell, M. An implicit surface tension model for the analysis of droplet dynamics. J. Comp. Phys. 2018, 374, 1196–1218. [Google Scholar] [CrossRef]
- Prosperetti, A. Normal-mode analysis for the oscillations of a viscous-liquid drop in an immiscible liquid. J. M´Ecanique 1980, 19, 149–182. [Google Scholar]
- Cox, E.P. A Method of Assigning Numerical and Percentage Values to the Degree of Roundness of Sand Grains. J. Paleontol. 1927, 1, 179–183. [Google Scholar]
- Martendal, C.P.; de Oliveira, A.P.N. Glass viscosity at crystallization temperature: An approach. J. Therm. Anal. Calorim. 2017, 130, 1903–1912. [Google Scholar] [CrossRef]
SiCaDF (*) | WG (#) | SG7 (#) | VG (#) | SmAS (#) | YAS (#) | VG98 (#) | SiTiFD (*) | |
---|---|---|---|---|---|---|---|---|
SiO2 | 73.3 | 72.6 | 71.7 | 68.8 | 59.8 | 58.1 | 56.7 | 32.3 |
B2O3 | 8.3 | 24.8 | 12.4 | 4.9 | ||||
Al2O3 | 2.1 | 8.6 | 0.4 | 24.7 | 20.1 | 2.6 | 2.4 | |
TiO2 | 25.0 | |||||||
Li2O | 2.6 | |||||||
Na2O | 10.8 | 13.1 | 7.4 | 6.0 | 17.5 | 32.3 | ||
CaO | 9.8 | 5.9 | 2.7 | 4.1 | ||||
BaO | 1.0 | |||||||
MgO | 3.5 | 5.6 | 1 | 2.1 | ||||
Fe2O3 | 0.2 | |||||||
Y2O3 | 21.7 | |||||||
Sm2O3 | 15.5 | |||||||
K2O | 0.5 | |||||||
ZrO | 1.0 | |||||||
P2O5 | 0.1 | |||||||
MoO3 | 1.2 |
Glass | Tg (K) | Ts (K) | Tx (K) | log(η0) | B | T0 (K) |
---|---|---|---|---|---|---|
SiCaDF | 786 (10) | 1266 | 1300 | −3.40 (2) | 5229 (52) | 441 (4) |
WG (*) | 844 (8) | 1143 | 1257 | −4.6 (2) | 4908 (384) | 516 (23) |
SG7 (*) | 878 (7) | 953 | 1037 | 0.36 (4) | 4212 (50) | 580 (3) |
VG | 742 (10) | 986 | 1009 | −7.3 (3) | 9112 (572) | 321 (28) |
SmAS | 1156 (10) | 1340 | 1419 | −5.1 (1) | 6054 (176) | 802 (10) |
YAS (*) | 1180 (7) | 1309 | 1409 | −5.3 (3) | 6342 (141) | 818 (8) |
VG98 (*) | 814 (8) | 899 | 933 (*) | −0.58 (2) | 2817 (19) | 628 (2) |
SiTiFD | 789 (5) | 1209 | 1301 | −3.51 (5) | 2600 (41) | 625 (3) |
Glass | T (K) | Log(τ) (𝛕 in s) | Log(η) (η in Pa s) |
---|---|---|---|
SiCaDF | 883 | 5.457 | 8.430 |
SiCaDF | 913 | 4.475 | 7.678 |
SiCaDF | 985 | 2.745 | 6.212 |
SiCaDF | 978 | 3.119 | 6.337 |
SiCaDF | 953 | 3.599 | 6.812 |
SiCaDF | 973 | 3.469 | 6.428 |
SiCaDF | 995 | 2.230 | 6.038 |
VV | 923 | 5.409 | 7.455 |
VV | 948 | 4.550 | 6.757 |
VV | 963 | 4.220 | 6.376 |
VV | 988 | 4.000 | 5.795 |
VV | 1023 | 2.970 | 5.078 |
VV | 1023 | 2.800 | 5.078 |
VV | 1073 | 2.093 | 4.209 |
VG | 1033 | 2.370 | 6.120 |
VG | 1013 | 2.465 | 6.496 |
VG | 993 | 3.705 | 6.910 |
VG | 973 | 4.549 | 7.348 |
SmAS | 1273 | 4.237 | 7.767 |
SmAS | 1243 | 4.970 | 8.643 |
SmAS | 1293 | 3.143 | 7.243 |
YAS | 1293 | 4.133 | 8.002 |
YAS | 1273 | 4.520 | 8.59 |
YAS | 1253 | 5.238 | 9.232 |
SiTiFD | 873 | 2.253 | 6.970 |
SiTiFD | 853 | 2.430 | 7.890 |
SiTiFD | 813 | 3.083 | 10.310 |
SiTiFD | 793 | 3.980 | 11.950 |
SiTiFD | 803 | 3.382 | 11.080 |
Glass | T (K) (*) | Log(τ) (*) (τ in s) | (^) Log(η) (η in Pa s) | (#) Log(η) (η in Pa s) | % |
---|---|---|---|---|---|
SG7 | 1023 | 4.458 | 7.862 | 6.802 | −14 |
SG7 | 1043 | 3.807 | 7.452 | 6.428 | 14 |
SG7 | 1063 | 3.790 | 7.076 | 6.482 | −9 |
SG7 | 1093 | 3.190 | 6.567 | 6.189 | −6 |
SG7 | 1113 | 3.266 | 6.259 | 6.350 | −1 |
VG98 | 913 | 3.960 | 7.294 | 7.292 | 0 |
VG98 | 933 | 3.960 | 6.647 | 6.980 | −5 |
VG98 | 943 | 3.690 | 6.354 | 6.724 | −6 |
VG98 | 953 | 3.660 | 6.08 | 6.602 | −9 |
VG98 | 973 | 2.880 | 5.578 | 6.018 | −8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, M.O.; Benedetto, F.E. Assigning Viscosity Values in the Glass Softening Temperature Range. Materials 2023, 16, 1596. https://doi.org/10.3390/ma16041596
Prado MO, Benedetto FE. Assigning Viscosity Values in the Glass Softening Temperature Range. Materials. 2023; 16(4):1596. https://doi.org/10.3390/ma16041596
Chicago/Turabian StylePrado, Miguel O., and Franco E. Benedetto. 2023. "Assigning Viscosity Values in the Glass Softening Temperature Range" Materials 16, no. 4: 1596. https://doi.org/10.3390/ma16041596
APA StylePrado, M. O., & Benedetto, F. E. (2023). Assigning Viscosity Values in the Glass Softening Temperature Range. Materials, 16(4), 1596. https://doi.org/10.3390/ma16041596