Enhanced Wettability, Hardness, and Tunable Optical Properties of SiCxNy Coatings Formed by Reactive Magnetron Sputtering
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Film Growth
2.3. Film Stability Study
2.4. Characterization Techniques
3. Results and Discussion
3.1. Film Growth Rate
3.2. Film Surface Morphology, Topology and Structure Study
3.3. Chemical Composition of SiCxNy Films
3.3.1. EDX Data
3.3.2. FTIR Data
3.3.3. Raman Spectroscopy
3.3.4. SiCxNy Film Chemical Bonding State
3.4. Functional Properties of SiCxNy Films
3.4.1. Wettability of SiCxNy Films
3.4.2. Optical Properties of Films
3.4.3. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ermakova, E.; Kosinova, M. Organosilicon compounds as single-source precursors for SiCN films production. J. Organomet. Chem. 2022, 958, 122183. [Google Scholar]
- Barroso, G.; Li, Q.; Bordia, R.K.; Motz, G. Polymeric and ceramic silicon-based coatings—A review. J. Mater. Chem. A 2019, 7, 1936–1963. [Google Scholar]
- Hoffmann, P.; Fainer, N.; Kosinova, M.; Baake, O.; Ensinger, W. Chapter 21. Compilation on Synthesis, Characterization and Properties of Silicon and Boron Carbonitride Films. In Silicon Carbide—Materials, Processing and Applications in Electronic Devices; Mukherjee, M., Ed.; InTech: Rijeka, Croatia, 2011; pp. 487–546. ISBN 9789533079684. [Google Scholar]
- Hänninen, T.; Schmidt, S.; Ivanov, I.G.; Jensen, J.; Hultman, L.; Högberg, H. Silicon carbonitride thin films deposited by reactive high power impulse magnetron sputtering. Surf. Coat. Technol. 2018, 335, 248–256. [Google Scholar]
- Pettersson, M.; Berlind, T.; Schmidt, S.; Jacobson, S.; Hultman, L.; Persson, C.; Engqvist, H. Structure and composition of silicon nitride and silicon carbon nitride coatings for joint replacements. Surf. Coat. Technol. 2013, 235, 827–834. [Google Scholar]
- Pettersson, M.; Tkachenko, S.; Schmidt, S.; Berlind, T.; Jacobson, S.; Hultman, L.; Engqvist, H.; Persson, C. Mechanical and tribological behavior of silicon nitride and silicon carbon nitride coatings for total joint replacements. J. Mechan. Behav. Biomed. Mater. 2013, 25, 41–47. [Google Scholar]
- Tomastik, J.; Ctvrtlik, R.; Ingr, T.; Manak, J.; Opletalova, A. Effect of Nitrogen Doping and Temperature on Mechanical Durability of Silicon Carbide Thin Films. Sci. Rep. 2018, 8, 10428. [Google Scholar]
- Kozak, A.O.; Poradaa, O.K.; Ivashchenko, V.I.; Ivashchenko, L.A.; Scrynskyy, P.L.; Tomila, T.V.; Manzhara, V.S. Comparative investigation of Si-C-N Films prepared by plasma enhanced chemical vapour deposition and magnetron sputtering. Appl. Surf. Sci. 2017, 425, 646–653. [Google Scholar]
- Ctvrtlik, R.; Kulikovsky, V.; Vorlicek, V.; Tomastik, J.; Drahokoupil, J.; Jastrabik, L. Mechanical Properties and Microstructural Characterization of Amorphous SiCxNy Thin Films After Annealing Beyond 1100 °C. J. Am. Ceram. Soc. 2016, 99, 996–1005. [Google Scholar]
- Kulikovsky, V.; Ctvrtlik, R.; Vorlicek, V.; Zelezny, V.; Bohac, P.; Jastrabik, L. Effect of air annealing on mechanical properties and structure of SiCxNy magnetron sputtered films. Surf. Coat. Technol. 2014, 240, 76–85. [Google Scholar]
- Wang, J.P.; Lu, Y.H.; Shen, Y.G. Effect of nitrogen content on phase configuration, nanostructure and mechanical behaviors in magnetron sputtered SiCxNy thin films. Appl. Surf. Sci. 2010, 256, 1955–1960. [Google Scholar]
- Berlind, T.; Hellgren, N.; Johansson, M.P.; Hultman, L. Microstructure, mechanical properties, and wetting behavior of Si-C-N thin films grown by reactive magnetron sputtering. Surf. Coat. Technol. 2001, 141, 145–155. [Google Scholar]
- Bhattacharyya, A.S.; Mishra, S.K. Micro/nanomechanical behavior of magnetron sputtered Si–C–N coatings through nanoindentation and scratch tests. J. Micromech. Microeng. 2011, 21, 015011. [Google Scholar]
- Sundaram, K.B.; Alizadeh, Z.; Todi, R.M.; Desai, V.H. Investigations on hardness of rf sputter deposited SiCN thin films. Mater. Sci. Engineer. 2004, A368, 103–108. [Google Scholar]
- Li, W.L.; Zhang, Z.G.; Yang, J.L.; Fei, W.D. Effect of electron beam irradiation on structure and properties of SiCN thin films prepared by plasma assisted radio frequency magnetron sputtering. Vacuum 2011, 86, 457–460. [Google Scholar]
- Bhattacharyya, A.S.; Mishra, S.K.; Mukherjee, S. Correlation of structure and hardness of rf magnetron sputtered silicon carbonitride films. J. Vac. Sci. Technol. A 2010, 28, 505–509. [Google Scholar]
- Peng, X.; Hu, X.; Wang, W.; Song, L. Mechanical Properties of Silicon Carbonitride Thin Films. Jpn. J. Appl. Phys. 2003, 42, 620–622. [Google Scholar]
- Bachar, A.; Bousquet, A.; Mehdi, H.; Monier, G.; Robert-Goumet, C.; Thomas, L.; Belmahi, M.; Goullet, A.; Sauvage, T.; Tomasella, E. Composition and optical properties tunability of hydrogenated silicon carbonitride thin films deposited by reactive magnetron sputtering. App. Surf. Sci. 2018, 444, 293–302. [Google Scholar]
- Peng, Y.; Zhou, J.; Zhao, B.; Tan, X.; Zhang, Z. Structural and optical properties of the SiCN thin films prepared by reactive magnetron sputtering. App. Surf. Sci. 2011, 257, 4010–4013. [Google Scholar]
- Saito, N.; Goto, T.; Tomioka, Y.; Yamaguchi, T.; Shibayama, M. Improvement of photoconductivity of aSiC:H films by introducing nitrogen during magnetron sputtering process. J. Appl. Phys. 1991, 69, 1518–1521. [Google Scholar]
- Li, Q.; Wang, Y.; Shan, X.; Wang, X.; Zhao, W. Preparation and optical properties of SiCN thin films deposited by reactive magnetron sputtering. J. Mater. Sci. Mater. Electron. 2017, 28, 6769–6781. [Google Scholar]
- Sundaram, K.B.; Alizadeh, J. Deposition and optical studies of silicon carbide nitride thin films. Thin Solid Films 2000, 370, 151–154. [Google Scholar]
- Li, Q.; Chen, C.; Wang, M.; Lv, Y.; Mao, Y.; Xu, M.; Wang, Y.; Wang, X.; Zhang, Z.; Wang, S.; et al. Study on photoelectricity properties of SiCN thin films prepared by magnetron sputtering. J. Mater. Res. Technol. 2021, 15, 460–467. [Google Scholar]
- Song, Y.; Huang, Q.; Ma, C.; Yang, Q.; Shu, Z.; Liu, P.; Chen, Q.; Nikiforov, A.; Xiong, Q. Patterned superhydrophobic surface fabrication by coupled atmospheric pressure RF and pulsed volume dielectric barrier discharges. Plasma Process Polym. 2021, 18, e2100045. [Google Scholar]
- Hüger, E.; Gao, D.; Markwitz, A.; Geckle, U.; Bruns, M.; Schmidt, H. Room temperature oxidation of magnetron sputtered Si–C–N films. Appl. Surf. Sci. 2012, 258, 2944–2947. [Google Scholar]
- Pusch, C.; Hoche, H.; Berger, C.; Riedel, R.; Ionescu, E.; Klein, A. Influence of the PVD sputtering method on structural characteristics of SiCN-coatings—Comparison of RF, DC and HiPIMS sputtering and target configurations. Surf. Coat. Technol. 2011, 205, S119–S123. [Google Scholar]
- Peng, Y.; Zhou, J.; Lei, G.; Gan, Y.; Chen, Y. Microstructure and blue photoluminescence of hydrogenated silicon carbonitride thin films. Surf. Rev. Lett. 2018, 26, 1850177. [Google Scholar]
- Peng, Y.; Zhou, J.; Gong, J.; Yu, Q.; Lei, G. Microstructure and dielectric properties of silicon carbonitride dielectric barrier films deposited by sputtering. Surf. Rev. Lett. 2018, 25, 1850065. [Google Scholar]
- Peng, Y.; Zhou, J.; Gong, J.; Yu, Q. Microstructure and optical properties of SiCN thin films deposited by reactive magnetron sputtering. Mater. Lett. 2014, 131, 148–150. [Google Scholar]
- Medeiros, H.S.; Pessoa, R.S.; Sagás, J.C.; Fraga, M.A.; Santos, L.V.; Maciel, H.S.; Massi, M.; Sobrinho, A.S.; da Costa, M.E.H.M. Effect of nitrogen content in amorphous SiCxNyOz thin films deposited by low temperature reactive magnetron co-sputtering technique. Surf. Coat. Technol. 2011, 206, 1787–1795. [Google Scholar]
- Peng, Y.; Zhou, J.; Zhang, Z.; Zhao, B.; Tan, X. Influence of radiofrequency power on compositional, structural and optical properties of amorphous silicon carbonitride films. Appl. Surf. Sci. 2010, 256, 2189–2192. [Google Scholar]
- Bhattacharyya, A.S.; Das, G.C.; Mukherjee, S.; Mishra, S.K. Effect of radio frequency and direct current modes of deposition on protective metallurgical hard silicon carbon nitride coatings by magnetron sputtering. Vacuum 2009, 83, 1464–1469. [Google Scholar]
- Bhattacharyya, A.S.; Mishra, S.K.; Mukherjee, S.; Das, G.C. A comparative study of Si–C–N films on different substrates grown by RF magnetron sputtering. J. Alloys Comp. 2009, 478, 474–478. [Google Scholar]
- Fraga, M.A.; Massi, M.; Oliveira, I.C.; Maciel, H.S.; Filho, S.G.; Mansano, R.D. Nitrogen doping of SiC thin films deposited by RF magnetron sputtering. J. Mater. Sci. Mater. Electron. 2008, 19, 835–840. [Google Scholar]
- Mishra, S.K.; Shekhar, C.; Rupa, P.K.P.; Pathak, L.C. Effect of pressure and substrate temperature on the deposition of nano-structured silicon–carbon–nitride superhard coatings by magnetron sputtering. Thin Solid Films 2007, 515, 4738–4744. [Google Scholar]
- Du, X.-W.; Fu, Y.; Sun, J.; Yao, P.; Cui, L. Intensive light emission from SiCN films by reactive RF magnetron sputtering. Mater. Chem. Phys. 2007, 103, 456–460. [Google Scholar]
- Wei, J.; Gao, Y.; Zhang, D.H.; Hing, P.; Mo, Z.Q. Growth of SiCN films by magnetron sputtering. Surf. Engineer. 2000, 16, 225–228. [Google Scholar]
- Xiao, X.; Jiang, W.H.; Song, L.X.; Peng, X. Influence of sputtering process on the deposition and optical properties of SiCN films. J. Inorg. Mater. 2000, 15, 717–721. [Google Scholar]
- Lutz, H.; Bruns, M.; Link, F.; Baumann, H. Surface- and microanalytical characterization of silicon-carbonitride thin films prepared by means of radio-frequency magnetron co-sputtering. Thin Solid Films 1998, 332, 230–234. [Google Scholar]
- Scharf, T.W.; Deng, H.; Barnard, J.A. Mechanical and fracture toughness studies of amorphous SiC–N hard coatings using nanoindentation. J. Vac. Sci. Technol. A 1997, 15, 963–967. [Google Scholar]
- Hoche, H.; Pusch, C.; Riedel, R.; Fasel, C.; Klein, A. Properties of SiCN coatings for high temperature applications – Comparison of RF-, DC- and HPPMS-sputtering. Surf. Coat. Technol. 2010, 205, S21–S27. [Google Scholar]
- Hoche, H.; Allebrandt, D.; Bruns, M.; Riedel, R.; Fasel, C. Relationship of chemical and structural properties with the tribological behavior of sputtered SiCN films. Surf. Coat. Technol. 2008, 202, 5567–5571. [Google Scholar]
- Mayrhofer, P.H.; Mitterer, C.; Hultman, L.; Clemens, H. Microstructural design of hard coatings. Prog. Mater. Sci. 2006, 51, 1032–1114. [Google Scholar]
- Huang, C.; Lin, H.-H.; Li, C. Atmospheric Pressure Plasma Polymerization of Super-Hydrophobic Nano-films Using Hexamethyldisilazane Monomer. Plasma Chem. Plasma Process. 2015, 35, 1015–1028. [Google Scholar]
- Bhaskar, N.; Sulyaeva, V.; Gatapova, E.; Kaichev, V.; Rogilo, D.; Khomyakov, M.; Kosinova, M.; Basu, B. SiCxNyOz Coatings Enhance Endothelialization and Bactericidal activity and Reduce Blood Cell Activation. ACS Biomater. Sci. Eng. 2020, 6, 5571–5587. [Google Scholar]
- Sulyaeva, V.S.; Plekhanov, A.G.; Maksimovskii, E.A.; Fainer, N.I.; Rumyantsev, Y.M.; Kosinova, M.L. Characterization of Thin Boron and Silicon Carbonitride Films by Wavelength Dispersive Spectroscopy. Prot. Met. Phys. Chem. Surf. 2017, 53, 1187–1191. [Google Scholar]
- Scofield, J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron. Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar]
- Korsunsky, A.M.; McGurk, M.R.; Bull, S.J.; Page, T.F. On the hardness of coated systems. Surf. Coat. Technol. 1998, 99, 171–183. [Google Scholar]
- Sarkar, J. Sputtering and Thin Film Deposition. In Sputtering Materials for VLSI and Thin Film Devices; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 93–170. [Google Scholar]
- Habib, S.K.; Rizk, A.; Mousa, I.A. Physical parameters affecting deposition rates of binary alloys in a magnetron sputtering system. Vacuum 1998, 49, 153–160. [Google Scholar]
- Jeong, S.H.; Boo, J.H. Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering. Thin Solid Film. 2004, 447, 105–110. [Google Scholar]
- Tolstoy, V.P.; Chernyshova, I.V.; Skryshevsky, V.A. Handbook of Infrared Spectroscopy of Ultrathin Films; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; 739p. [Google Scholar]
- Xiao, X.-C.; Li, Y.-W.; Song, L.-X.; Peng, X.-F.; Hu, X.-F. Structural analysis and microstructural observation of SiCxNy films prepared by reactive sputtering of SiC in N2 and Ar. Appl. Surf. Sci. 2000, 156, 155–160. [Google Scholar]
- Jiang, J.; Ou-yang, L.; Zhu, L.; Zheng, A.; Zou, J.; Yi, X.; Tang, H. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Carbon 2014, 80, 213–221. [Google Scholar]
- Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414. [Google Scholar]
- Closser, R.G.; Bergsman, D.S.; Bent, S.F. Molecular Layer Deposition of a Highly Stable Silicon Oxycarbide Thin Film Using an Organic Chlorosilane and Water. ACS Appl. Mater. Interfaces 2018, 10, 24266–24274. [Google Scholar] [CrossRef]
- O’Hare, L.-A.; Parbhoo, B.; Leadley, S.R. Development of a methodology for XPS curve-fitting of the Si 2p core level of siloxane materials. Surf. Interface Anal. 2004, 36, 1427–1434. [Google Scholar] [CrossRef]
- Dupuis, J.; Fourmond, E.; Ballutaud, D.; Bererd, N.; Lemiti, M. Optical and structural properties of silicon oxynitride deposited by plasma enhanced chemical vapor deposition. Thin Solid Films 2010, 519, 1325–1333. [Google Scholar] [CrossRef]
- Kim, J.G.; Yoo, W.S.; Park, J.Y.; Lee, W.J. Quantitative Analysis of Contact Angle of Water on SiC: Polytype and Polarity Dependence. ECS J. Solid State Sci. Technol. 2020, 9, 123006. [Google Scholar]
- Yang, Q.; Lv, Z.; Wu, T.; Chen, Y.; Ren, X.; Cheng, J.; Lou, D.; Chen, L.; Zheng, Z.; Rui, Q.; et al. Formation Mechanism of Gradient Wettability of Si3N4 Ceramic Surface Induced Using a Femtosecond Laser. Phys. Status Solidi A 2020, 217, 2000105. [Google Scholar]
- Langpoklakpam, C.; Liu, A.-C.; Chu, K.-H.; Hsu, L.-H.; Lee, W.-C.; Chen, S.-C.; Sun, C.-W.; Shih, M.-H.; Lee, K.-Y.; Kuo, H.-C. Review of Silicon Carbide Processing for Power MOSFET. Crystals 2022, 12, 245. [Google Scholar]
- Krückel, C.J.; Fülöp, A.; Ye, Z.; Andrekson, P.A.; Torres-Company, V. Optical bandgap engineering in nonlinear silicon nitride waveguides. Optics Express 2017, 25, 15370–15380. [Google Scholar]
- Kaloyeros, A.E.; Pan, Y.; Goff, J.; Arkles, B. Review—Silicon Nitride and Silicon Nitride-Rich Thin Film Technologies: State-of-the-Art Processing Technologies, Properties, and Applications. ECS J. Solid State Sci. Technol. 2020, 9, 063006. [Google Scholar]
- Tan, D.T.H.; Ikeda, K.; Sun, P.C.; Fainman, Y. Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl. Phys. Lett. 2010, 96, 061101. [Google Scholar]
- Ouadah, Y.; Kaci, S.; Keffous, A.; Manseri, A.; Menari, H. Optical and photoelectrochemical properties of nitrogen-doped a-SiC thin films deposited by reactive sputtering method at room temperature. Adv. Mater. Proces. Technol. 2021, 1, 13. [Google Scholar]
- Ermakova, E.; Mogilnikov, K.; Asanov, I.; Fedorenko, A.; Yushina, I.; Kichay, V.; Maksimovskiy, E.; Kosinova, M. Chemical Structure, Optical and Dielectric Properties of PECVD SiCN Films Obtained from Novel Precursor. Coatings. 2022, 12, 1767. [Google Scholar]
- Sulyaeva, V.; Khomyakov, M.; Kosinova, M. Room-Temperature Formation of Hard BCx Films by Low Power Magnetron Sputtering. Appl. Sci. 2021, 11, 9896. [Google Scholar]
Deposition Conditions | Film Properties | Functional Characteristics | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|
Targets | Additional Gases | Power, W | Tdep, °C | dfilm, µm | RMS, nm | Optical | Mechanical | Wettability | |
n (λ, nm) T, % (range, nm) Eg, eV | H, GPa E, GPa R, % | CA, ° | |||||||
HiPIMS | |||||||||
Si | C2H2, N2, Ar | 1200 | RT–340 | 0.3–0.9 | – | – | 5–23 50–190 – | – | [4] |
Si; C | N2, Ar | 1000–1400; 0–1400 | 110, 430 | 0.5–0.9 | 0.2–3.8 | – | 10–21 140–220 – | – | [5] |
Si; C | N2, Ar | 1000–1400; 0–1400 | 110, 430 | 0.4–0.9 | – | – | 10–21 140–220 – | – | [6] |
DCMS | |||||||||
SiC | N2, Ar | 320 | RT | 2.2–2.7 | 1 | – | 18–23 242–293 – | – | [7] |
SiC | N2, Ar | – | 350 | 0.6–0.9 | 0.23, 0.28 | – | 16–22.5 165–205 – | – | [8] |
SiC | N2, Ar | 320 | RT–600 | 2.2–3.4 | – | – | 18.5–22.5 270–285 – | – | [9] |
SiC | N2, Ar | 320 | RT | 2.2–2.7 | – | – | 10–23 230–295 – | – | [10] |
Si; C | N2, Ar | – – | 500 | 1.5 | – | – | 16.5–29 – – | – | [11] |
Si; C | N2, Ar | 17.5; 100 | 100 350 | 0.5 | 2 | – | 9–28 – – | 57–87 | [12] |
RFMS | |||||||||
Si | CH4, N2, Ar | 300 | 400 | 0.375–0.614 | – | 1.9–2.5 (633) – 2.0–3.8 | – – – | – | [18] |
Si | C2H2, N2, Ar | – | RT | – | – | – 40–95 (400–1000) 2.1–2.9 | – – – | – | [19] |
Si | CH4, N2, Ar | 200 | 300 | – | – | – – 1.9–2.4 | – – – | – | [20] |
Si; C | N2, Ar | 210–270; 80–110 | 0.099–0.459 | – | – 97–89 (200–1200) 3.64–3.98 | – – – | – | [21] | |
SiC | N2, Ar | 400 | 500 | 4 | – | – – – | 20 210 45 | – | [13] |
SiC | N2, Ar | 100 | – | – | 65–15 | – – – | 5.8–12.2 73.5–117.8 – | – | [14] |
SiC | N2, Ar | 100 | RT | – | – | – – – | 13–17.5 – – | – | [15] |
SiC | N2, Ar | 200–400 | RT–600 | 3.5–4.1 | – | – – – | 8–22 – – | [16] | |
SiC | N2, Ar | 100 | – | – | – | – 95 (700–800) 2.28 – 2.77 | – – – | – | [22] |
SiC; Si3N4 | N2, Ar; CH4, Ar | 220–600 140–600 | RT | – | – | – – – | 12–15.5 95–135 – | – | [17] |
Si3N4; C | Ar | 100–190 80–110 | RT, 500–700 | 0.12 | 2.2 | – 2–70 (400–800) 3.0–5.1 | – – – | – | [23] |
SiC | N2, Ar | 50–150 | RT, 300 | 0.14–0.32 | 0.2 | 1.94–2.85 (632.8) 32–60 (550) 1.81–2.53 | 16.2–34.4 153–269 64–75 | 37–67 | This study |
Deposition Technique | H, GPa | E, GPa | Elemental Composition | Chemical Bonds | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|
Si | C | N | O | H | Ar | |||||
RFMS DCMS HiPIMS | 22 21 19 | 225 223 202 | 50 36 23 | 25 29 25 | 25 35 52 | – – – | – – – | – – – | C≡N, Si−C, Si−N, C=N/C−C, C−N, C−H, N−H Si−C, Si−N, C≡N, C=N/C−C, C−N Si−C, Si−N, C≡N, C=N/C−C, C−N | [41] |
RFMS | 28 | 226 | 47 | 25 | 25 | 3 | Si−C, Si−N, C–C/C–H, Si–O | [42] | ||
RFMS DCMS | 22 16 | 240 200 | 32 20 | 39 56 | 29 44 | – – | – – | – – | − – | [32] |
DCMS | 22 | – | 41 | 45 | 14 | – | – | – | Si−N, C−N, C≡N, Si−C−N | [7] |
DCMS | 19 | 185 | 34 | 39 | 20 | 7 | – | – | Si−C, Si−N, C−N, Si−O, C≡N | [8] |
DCMS | 22 | – | 41 | 45 | 14 | – | – | – | − | [9] |
HiPIMS | 22 | 185 | 40 | 8 | 38 | 3.7 | 8 | 2.3 | Si−C, Si−N, Si−O, C−C, C−N, C−O | [4] |
Series | Tdep, °C | RF Power, W | F(N2), sccm | F(Ar), sccm | F(N2)/[F(N2) + F(Ar)] | Deposition Time, min | d, nm | Composition of SiCxNy |
---|---|---|---|---|---|---|---|---|
A | 25 | 150 | 0 | 60 | 0.00 | 3.0 | 233 | SiC1.16N0.12 |
2 | 58 | 0.03 | 3.0 | 297 | SiC1.10N0.73 | |||
5 | 55 | 0.08 | 3.0 | 291 | SiC1.08N1.22 | |||
10 | 50 | 0.17 | 2.5 | 257 | SiC1.10N1.79 | |||
15 | 45 | 0.25 | 2.5 | 250 | SiC1.08N1.93 | |||
20 | 40 | 0.33 | 3.0 | 281 | SiC1.03N2.04 | |||
25 | 35 | 0.42 | 3.0 | 240 | SiC0.96N2.07 | |||
30 | 30 | 0.50 | 3.0 | 265 | SiC0.87N2.02 | |||
B | 25 | 50 | 30 | 30 | 0.50 | 9.0 | 146 | SiC1.19N1.97 |
100 | 6.5 | 165 | SiC1.10N1.76 | |||||
150 | 3.0 | 265 | SiC0.87N2.02 | |||||
C | 300 | 150 | 0 | 60 | 0.00 | 3.0 | 140 | SiC1.33N0.04 |
15 | 45 | 0.25 | 2.5 | 160 | SiC1.14N1.25 | |||
30 | 30 | 0.50 | 2.4 | 170 | SiC1.01N1.79 |
F(N2), sccm | Si, at.% | C, at.% | N, at.% | O, at.% | Si/C |
---|---|---|---|---|---|
0 | 36.0 (35.4) * | 47.7 (47.0) | 1.4 (1.9) | 14.9 (15.7) | 0.8 |
15 | 26.7 (27.0) | 30.4 (30.8) | 33.3 (32.4) | 9.6 (9.8) | 0.9 |
30 | 23.7 (23.7) | 23.9 (25.6) | 42.4 (40.0) | 10.0 (10.6) | 1.0 |
Tdep, °C | F(N2), sccm | D Peak, cm–1 | G Peak, cm–1 | ID/IG | La, nm |
---|---|---|---|---|---|
25 | 0 | 1385 | 1470 | 1.24 | 1.50 |
15 | 1391 | 1549 | 1.52 | 1.66 | |
30 | 1397 | 1571 | 2.25 | 2.02 | |
300 | 0 | 1400 | 1478 | 1.47 | 1.63 |
15 | 1438 | 1540 | 1.83 | 1.82 | |
30 | 1453 | 1570 | 2.51 | 2.14 |
F(N2), sccm | [C]/[Si] | [N]/[Si] | [O]/[Si] | Elemental Composition | |||
---|---|---|---|---|---|---|---|
Si, at.% | C, at.% | N, at.% | O, at.% | ||||
0 | 1.7 | 0.05 | 0.75 | 28.6 (36.0) | 48.6 (47.7) | 1.5 (1.4) | 21.4 (14.9) |
15 | 1.3 | 0.79 | 0.81 | 25.6 (26.7) | 33.3 (30.4) | 20.3 (33.3) | 20.8 (9.6) |
30 | 1.4 | 0.95 | 0.98 | 23.1 (23.7) | 32.3 (23.9) | 21.9 (42.4) | 22.6 (10.0) |
F(N2), sccm | Si2p | C1s | N1s | ||||||
---|---|---|---|---|---|---|---|---|---|
Si–C | Si–N | Si–O | C–Si | C–C | C–N | C–O | N–Si | N–C | |
0 | 100.4 (80%) | 101.4 (5%) | 102.2 (15%) | 282.8 (40%) | 284.5 (50%) | 286.4 (7%) | 288.7 (3%) | 397.1 (90%) | 399.8 (10%) |
15 | 100.5 (11%) | 101.5 (75%) | 102.9 (14%) | 283.1 (19%) | 284.5 (63%) | 286.4 (13%) | 288.3 (5%) | 397.5 (89%) | 399.4 (11%) |
30 | 100.4 (5%) | 101.5 (71%) | 102.9 (24%) | 282.8 (5%) | 284.5 (69%) | 286.5 (19%) | 288.3 (7%) | 397.5 (84%) | 399.6 (16%) |
Tdep., °C | N2 Flow Rate, sccm | CA, ° | |
---|---|---|---|
Ellipse-Fitting | Young–Laplace | ||
25 | 0 | 39 ± 2 | 39 ± 2 |
2 | 37 ± 1 | 37 ± 1 | |
5 | 44 ± 3 | 44 ± 3 | |
10 | 49 ± 3 | 48 ± 1 | |
15 | 49.3 ± 0.7 | 50.7 ± 0.7 | |
20 | 48.8 ± 0.6 | 48.7 ± 0.7 | |
25 | 41.1 ± 0.5 | 41.1 ± 0.3 | |
30 | 42 ± 2 | 43 ± 2 | |
300 | 0 | 67 ± 4 | 67 ± 4 |
15 | 61 ± 8 | 61 ± 8 | |
30 | 60 ± 1 | 61 ± 2 |
Tdep, °C | F(N2), sccm | H, GPa | E, GPa | R, % | Lcr.1, mN | Lcr.2, mN |
---|---|---|---|---|---|---|
25 | 0 | 34.4 ± 3.4 | 269 ± 15 | 75 | 73 | 28 |
15 | 20.6 ± 2.2 | 171 ± 12 | 68 | 43 | 28 | |
30 | 16.2 ± 2.7 | 153 ± 9 | 64 | 85 | 25 | |
300 | 0 | 27.3 ± 2.4 | 198 ± 10 | 73 | 25 | 13 |
15 | 22.6 ± 2.9 | 183 ± 6 | 71 | 62 | 17 | |
30 | 17.1 ± 3.1 | 164 ± 13 | 64 | 41 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulyaeva, V.S.; Kolodin, A.N.; Khomyakov, M.N.; Kozhevnikov, A.K.; Kosinova, M.L. Enhanced Wettability, Hardness, and Tunable Optical Properties of SiCxNy Coatings Formed by Reactive Magnetron Sputtering. Materials 2023, 16, 1467. https://doi.org/10.3390/ma16041467
Sulyaeva VS, Kolodin AN, Khomyakov MN, Kozhevnikov AK, Kosinova ML. Enhanced Wettability, Hardness, and Tunable Optical Properties of SiCxNy Coatings Formed by Reactive Magnetron Sputtering. Materials. 2023; 16(4):1467. https://doi.org/10.3390/ma16041467
Chicago/Turabian StyleSulyaeva, Veronica S., Alexey N. Kolodin, Maxim N. Khomyakov, Alexander K. Kozhevnikov, and Marina L. Kosinova. 2023. "Enhanced Wettability, Hardness, and Tunable Optical Properties of SiCxNy Coatings Formed by Reactive Magnetron Sputtering" Materials 16, no. 4: 1467. https://doi.org/10.3390/ma16041467
APA StyleSulyaeva, V. S., Kolodin, A. N., Khomyakov, M. N., Kozhevnikov, A. K., & Kosinova, M. L. (2023). Enhanced Wettability, Hardness, and Tunable Optical Properties of SiCxNy Coatings Formed by Reactive Magnetron Sputtering. Materials, 16(4), 1467. https://doi.org/10.3390/ma16041467