Effect of Lattice Constants and Precipitates on the Dimensional Stability of Rolled 2024Al during Isothermal Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Fabrication Process and Heat Treatment
2.2. Testing Methods
3. Results and Discussion
3.1. Dimension Change during Constant Temperature Aging
3.2. The Grain Morphology of the Rolled 2024Al
3.3. Measurement of Dislocation Density
3.4. Changes in Lattice Constants before and after Aging
3.5. Types of Precipitates in Rolled 2024Al
3.6. Precipitation Behavior under Constant Temperature Aging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marschall, C.W.; Maringer, R.E. Dimensional Instability; Pergamon Press: New York, NY, USA, 1977. [Google Scholar]
- Huda, Z.; Taib, N.I.; Zaharinie, T. Characterization of 2024-T3: An aerospace aluminum alloy. Mater. Chem. Phys. 2009, 113, 515–517. [Google Scholar] [CrossRef]
- Williams, J.C.; Starke, E.A. Progress in structural materials for aerospace systems11The Golden Jubilee Issue—Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S. Suresh. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Cao, Y.; Jiang, L.; Gong, D.; Chen, G.; Xiu, Z.; Cheng, Y.; Wang, X.; Wu, G. Quantitative study of dimensional stability mechanism and microstructure evolution during precipitation process of 2024Al alloy. J. Mater. Sci. Technol. 2021, 90, 85–94. [Google Scholar] [CrossRef]
- Hogg, S.C.; Mi, J.; Nilsen, K.E.; Liotti, E.; Grant, P.S. Microstructure and property development in spray formed and extruded Al-Mg-Li-Zr alloys for aerospace and autosport applications. Mater. Und Werkst. 2010, 41, 562–567. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Pan, S.P.; Zhou, M.Z.; Yi, D.Q.; Xu, D.Z.; Xu, Y.F. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy. Mater. Sci. Eng. 2013, 580, 150–158. [Google Scholar] [CrossRef]
- Kinast, J.; Tünnermann, A.; Undisz, A. Dimensional Stability of Mirror Substrates Made of Silicon Particle Reinforced Aluminum. Materials 2022, 15, 2998. [Google Scholar] [CrossRef]
- Rudajevová, A.; Dušek, K. Influence of Manufacturing Mechanical and Thermal Histories on Dimensional Stabilities of FR4 Laminate and FR4/Cu-Plated Holes. Materials 2018, 11, 2114. [Google Scholar] [CrossRef]
- Gong, D.; Cao, Y.; Deng, X.; Jiang, L. Revealing the dimensional stability mechanisms of SiC/Al composite under long-term thermal cycling. Ceram. Int. 2022, 48, 13927–13937. [Google Scholar] [CrossRef]
- Wang, K.; Long, H.; Chen, Y.; Baniassadi, M.; Rao, Y.; Peng, Y. Heat-treatment effects on dimensional stability and mechanical properties of 3D printed continuous carbon fiber-reinforced composites. Compos. Appl. Sci. Manuf. 2021, 147, 106460. [Google Scholar] [CrossRef]
- Uju, W.A.; Oguocha, I.N.A. Thermal cycling behaviour of stir cast Al–Mg alloy reinforced with fly ash. Mater. Sci. Eng. 2009, 526, 100–105. [Google Scholar] [CrossRef]
- Fukui, K.; Takeda, M.; Endo, T. Morphology and thermal stability of metastable precipitates formed in an Al–Mg–Si ternary alloy aged at 403 K to 483 K. Mater. Lett. 2005, 59, 1444–1448. [Google Scholar] [CrossRef]
- Senthilkumar, D.; Rajendran, I.; Pellizzari, M.; Siiriainen, J. Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel. J. Mater. Process. Technol. 2011, 211, 396–401. [Google Scholar] [CrossRef]
- Tu, X.X.; Xiao, L.R.; Zhao, X.J.; Cai, Z.Y.; Peng, Z.W.; Wei, D.M. Effects of thermal-cold cycling on the dimensional stability of TiC reinforced steel matrix composite. Mater. Lett. 2020, 279, 128483. [Google Scholar] [CrossRef]
- Fu, L.; Wu, G.; Zhou, C.; Xiu, Z.; Yang, W.; Qiao, J. Effect of Microstructure on the Dimensional Stability of Extruded Pure Aluminum. Materials 2021, 14, 4797. [Google Scholar] [CrossRef]
- Dong, Y.B.; Shao, W.Z.; Jiang, J.T.; Chao, D.Y.; Zhen, L. Influence of quenching rate on microstructure and dimensional stability of Al–Cu–Mg–Si alloy. Mater. Sci. Technol. 2016, 32, 1861–1868. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Z.; Li, S.; Huang, T.; Xia, P.; Lu, L. Evolution of the Brass texture in an Al-Cu-Mg alloy during hot rolling. J. Alloys Compd. 2017, 691, 786–799. [Google Scholar] [CrossRef]
- El-Shenawy, E.; Mohamed, H.; Reda, R. Effect of Hot-Rolling Strategy on the Flow Behavior, Productivity, and Mechanical Performance of Ti-6Al-4V Alloy. Materials 2022, 15, 8344. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Z.; Liu, M.; Hu, Y.; Chen, Y.; Bai, S. Texture Evolution and Its Effect on Fatigue Crack Propagation in Two 2000 Series Alloys. J. Mater. Eng. Perform. 2019, 28, 1324–1336. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Z.; He, G. Effect of cold rolling on microstructure and hardness of annealed Al–Cu–Mg alloy. Arch. Civ. Mech. Eng. 2022, 22, 64. [Google Scholar] [CrossRef]
- Vasudevan, A.K.; Przystupa, M.A.; Fricke, W.G. Texture-microstructure effects in yield strength anisotropy of 2090 sheet alloy. Scr. Metall. Et Mater. 1990, 24, 1429–1434. [Google Scholar] [CrossRef]
- Wang, X.; Guo, M.; Zhang, Y.; Xing, H.; Li, Y.; Luo, J.; Zhang, J.; Zhuang, L. The dependence of microstructure, texture evolution and mechanical properties of Al–Mg–Si–Cu alloy sheet on final cold rolling deformation. J. Alloys Compd. 2016, 657, 906–916. [Google Scholar] [CrossRef]
- Chen, D.L.; Chaturvedi, M.C.; Goel, N.; Richards, N.L. Fatigue crack growth behavior of X2095 Al–Li alloy. Int. J. Fatigue 1999, 21, 1079–1086. [Google Scholar] [CrossRef]
- Wang, X.; Wu, G.; Sun, D.; Qin, C.; Tian, Y. Micro-yield property of sub-micron Al2O3 particle reinforced 2024 aluminum matrix composite. Mater. Lett. 2004, 58, 333–336. [Google Scholar] [CrossRef]
- Song, Y.F.; Ding, X.F.; Xiao, L.R.; Zhao, X.J.; Cai, Z.Y.; Guo, L.; Li, Y.W.; Zheng, Z.Z. Effects of two-stage aging on the dimensional stability of Al-Cu-Mg alloy. J. Alloys Compd. 2017, 701, 508–514. [Google Scholar] [CrossRef]
- Gong, D.; Jiang, L.; Guan, J.; Liu, K.; Yu, Z.; Wu, G. Stable second phase: The key to high-temperature creep performance of particle reinforced aluminum matrix composite. Mater. Sci. Eng. 2020, 770, 138551. [Google Scholar] [CrossRef]
- Zhu, A.W.; Chen, J.; Starke, E.A. Precipitation strengthening of stress-aged Al–xCu alloys. Acta Mater. 2000, 48, 2239–2246. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Y.C.; Zhang, X.-C.; Jiang, Y.-Q. Effects of two-stage creep-aging on precipitates of an Al–Cu–Mg alloy. Mater. Sci. Eng. 2014, 614, 45–53. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Yan, F.; Zhang, Z.; Wu, Y. Microstructure Evolution and Mechanical Properties of AZ80 Mg Alloy during Annular Channel Angular Extrusion Process and Heat Treatment. Materials 2019, 12, 4223. [Google Scholar] [CrossRef]
- Song, Y.F.; Ding, X.F.; Zhao, X.J.; Xiao, L.R.; Guo, L. The effect of stress-aging on dimensional stability behavior of Al-Cu-Mg alloy. J. Alloys Compd. 2017, 718, 298–303. [Google Scholar] [CrossRef]
- Li, N.K.; Ling, G.; Nie, B.; Liu, J.A. Aluminum Alloy Material and Its Heat Treatment Technology; Metallurgical Industry Press: Beijing, China, 2012; p. 277. [Google Scholar]
- Shintani, T.; Murata, Y. Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction. Acta Mater. 2011, 59, 4314–4322. [Google Scholar] [CrossRef]
- Williamson, G.K.; Smallman, R.E. Dislocation Densities in Some Annealed and Cold-worked Metals from Measurements on the X-ray Debye-Scherrerspectrum. Philos. Mag. 1955, 1, 34–36. [Google Scholar] [CrossRef]
- Birringer, R.; Krilland, C.E.; Klingel, M. Orientation-phase-averaged Properties of Grain Boundaries. Philos. Mag. Lett. 1995, 2, 71–77. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, X.; Wang, L.; Qiao, J. The Effect of Extrusion and Heat Treatment on the Microstructure and Tensile Properties of 2024 Aluminum Alloy. Materials 2022, 15, 7566. [Google Scholar] [CrossRef] [PubMed]
- Styles, M.J.; Hutchinson, C.R.; Chen, Y.; Deschamps, A.; Bastow, T.J. The coexistence of two S (Al2CuMg) phases in Al–Cu–Mg alloys. Acta Mater. 2012, 60, 6940–6951. [Google Scholar] [CrossRef]
- Zhang, C.B.; Sun, W.; Ye, H.Q. Investigation of the crystallography and morphology of the S′ precipitate in an Al(CuMg) alloy by HREM. Philos. Mag. Lett. 1989, 59, 265–271. [Google Scholar] [CrossRef]
- Yin, M.-J.; Chen, J.-H.; Wang, S.-B.; Liu, Z.-R.; Cha, L.-M.; Duan, S.-Y.; Wu, C.-L. Anisotropic and temperature-dependent growth mechanism of S-phase precipitates in Al–Cu–Mg alloy in relation with GPB zones. Trans. Nonferrous Met. Soc. China 2016, 26, 1–11. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Samuel, E.; Zedan, Y.; Samuel, A.M.; Doty, H.W.; Samuel, F.H. Intermetallics Formation during Solidification of Al-Si-Cu-Mg Cast Alloys. Materials 2022, 15, 1335. [Google Scholar] [CrossRef]
- Staszczyk, A.; Sawicki, J.; Adamczyk-Cieslak, B. A Study of Second-Phase Precipitates and Dispersoid Particles in 2024 Aluminum Alloy after Different Aging Treatments. Materials 2019, 12, 4168. [Google Scholar] [CrossRef]
- Aliravci, C.A.; Pekgüleryüz, M.Ö. Calculation of phase diagrams for the metastable Al-Fe phases forming in direct-chill (DC)-cast aluminum alloy ingots. Calphad 1998, 22, 147–155. [Google Scholar] [CrossRef]
- Jansson, Å. A thermodynamic evaluation of the Al-Mn system. Metall. Mater. Trans. 1992, 23, 2953–2962. [Google Scholar] [CrossRef]
- Wu, G.H.; Gong, D.; Qiao, J.; Jiang, L.T. Material Problem of Inertial Instrument Precision Drift and the Design of High Dimensional Stability Composites. Navig. Control 2020, 19, 237–245. [Google Scholar]
- Chen, J.; Chen, Z.; Guo, X.; Deng, Y. Changing distribution and geometry of S′ in Al–Cu–Mg single crystals during stress aging by controlling the loading orientation. Mater. Sci. Eng. 2016, 650, 154–160. [Google Scholar] [CrossRef]
- Liu, C.; Malladi, S.K.; Xu, Q.; Chen, J.; Tichelaar, F.D.; Zhuge, X.; Zandbergen, H.W. In-situ STEM imaging of growth and phase change of individual CuAlX precipitates in Al alloy. Sci. Rep. 2017, 7, 2184. [Google Scholar] [CrossRef]
- Jia, Y.; Su, R.; Liao, H.; Li, G.; Qu, Y.; Li, R. Effect of Retrogression and Re-Aging on Microstructures and Mechanical Properties of an Al-Cu-Mg Alloy. J. Mater. Eng. Perform. 2023, 32, 1423–1431. [Google Scholar] [CrossRef]
- Guo, X.; Deng, Y.; Zhang, J.; Zhang, X. The inhibiting effect of dislocation helices on the stress-induced orientation of S’ precipitates in Al–Cu–Mg alloy. Mater. Charact. 2015, 107, 197–201. [Google Scholar] [CrossRef]
Element | Cu | Mg | Si | Fe | Mn | Zn | Cr | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
Content | 4.53 | 1.5 | 0.04 | 0.12 | 0.64 | 0.19 | 0.001 | 0.045 | Bal |
Sample Type | Microstrain (e) | Dislocation Density (cm−2) |
---|---|---|
Rolled 2024Al | 0.10119 | 9.73 × 1012 |
As-cast 2024Al | 0.03242 | 1.45 × 1012 |
Rolled 2024Al | Pure Al (a’) | Solid Solution State (a0) | Aging 72 h (a) | Δa |
---|---|---|---|---|
Lattice constant (nm) | 4.0494 | 0.40544 ± 0.00032 | 0.40392 ± 0.00025 | −0.00152 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, R.; Wang, P.; Jiang, S.; Yang, W.; Wu, P.; Qiao, J.; Chen, G.; Wu, G. Effect of Lattice Constants and Precipitates on the Dimensional Stability of Rolled 2024Al during Isothermal Aging. Materials 2023, 16, 1440. https://doi.org/10.3390/ma16041440
Pan R, Wang P, Jiang S, Yang W, Wu P, Qiao J, Chen G, Wu G. Effect of Lattice Constants and Precipitates on the Dimensional Stability of Rolled 2024Al during Isothermal Aging. Materials. 2023; 16(4):1440. https://doi.org/10.3390/ma16041440
Chicago/Turabian StylePan, Rongdi, Pingping Wang, Shan Jiang, Wenshu Yang, Ping Wu, Jing Qiao, Guoqin Chen, and Gaohui Wu. 2023. "Effect of Lattice Constants and Precipitates on the Dimensional Stability of Rolled 2024Al during Isothermal Aging" Materials 16, no. 4: 1440. https://doi.org/10.3390/ma16041440
APA StylePan, R., Wang, P., Jiang, S., Yang, W., Wu, P., Qiao, J., Chen, G., & Wu, G. (2023). Effect of Lattice Constants and Precipitates on the Dimensional Stability of Rolled 2024Al during Isothermal Aging. Materials, 16(4), 1440. https://doi.org/10.3390/ma16041440