Dynamics of Correlated Double-Ionization of Two-Electron Quantum Dots in Laser Fields
Abstract
:1. Introduction
2. Theoretical Formulation
2.1. Quantum Dot Model Potential
2.2. Theoretical Formulation of the Quantum Dot Structure
2.3. TDSE of Quantum Dot in the Laser Field
2.4. Radial and Kinetic Energy Distributions
3. Results and Discussion
3.1. Time Evolution of the Radial Wave Packets
3.2. Time Evolution of the Energy Distributions
3.3. Transition from Direct to Sequential Regime
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrison, P.; Valavanis, A. Quantum Wells, Wires and Dots; John Wiley and Sons: Chichester, UK, 2016. [Google Scholar]
- Chakraborty, T. Quantum Dots, a Survey of the Properties of Artificial Atoms; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford U. Press: Oxford, UK, 1995. [Google Scholar]
- Fejer, M.M.; Yoo, S.J.B.; Byer, R.L.; Alex, H.; Harris, J.S., Jr. Observation of Extremely Large Quadratic Susceptibility at 9.6–10.8 pm in Electric-Field-Biased AIGaAs Quantum Wells. Phys. Rev. Lett. 1989, 62, 1041. [Google Scholar] [CrossRef] [PubMed]
- Sirtori, C.; Capasso, F.; Sivco, D.L.; Cho, A.Y. Giant, triply resonant, third-order nonlinear susceptibility in coupled quantum wells. Phys. Rev. Lett. 1992, 68, 1010. [Google Scholar] [CrossRef] [PubMed]
- Heyman, J.N.; Craig, K.; Galdrikian, B.; Sherwin, M.S.; Campman, K.; Hopkins, P.F.; Fafard, S.; Gossard, A.C. Resonant harmonic generation and dynamic screening in a double quantum well. Phys. Rev. Lett. 1994, 72, 2183. [Google Scholar] [CrossRef] [PubMed]
- Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J.C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G.; et al. Size-Dependent Optical Properties of Colloidal Quantum Dots. Nano Lett. 2009, 3, 3023–3030. [Google Scholar] [CrossRef]
- Son, D.H.; Wittenberg, S.J.; Alivisatos, P.A. Multielectron Ionization of CdSe Quantum Dots in Intense Femtosecond Ultraviolet Light. Phys. Rev. Lett. 2004, 92, 127406. [Google Scholar] [CrossRef]
- Cho, B.; Peters, W.K.; Hill, R.J.; Courtney, T.L.; Jonas, D.M. Bulklike Hot Carrier Dynamics in Lead Sulfide Quantum Dots. Nano Lett. 2010, 10, 2498–2505. [Google Scholar] [CrossRef]
- Jacob, R.; Winnerl, S.; Fehrenbacher, M.; Bhattacharyya, J.; Schneider, H.; Wenzel, M.T.; Ribbeck, H.G.V.; Eng, L.M.; Atkinson, P.; Schmidt, O.G.; et al. Intersublevel Spectroscopy on Single In-As Quantum Dots by Terahertz Near-Field Microscopy. Nano Lett. 2012, 12, 4336–4340. [Google Scholar] [CrossRef]
- Ellis, J.L.; Hickstein, D.D.; Schnitzenbaumer, K.J.; Wilker, M.B.; Palm, B.B.; Jimenez, J.L.; Dukovic, G.; Kapteyn, H.C.; Murnane, M.M.; Xiong, W. Solvents effects on charge transfer from quantum dots. J. Am. Chem. Soc. 2015, 137, 3759–3762. [Google Scholar] [CrossRef]
- Ulbricht, R.; Hendry, E.; Shan, J.; Heinz, T.F.; Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 2011, 83, 543. [Google Scholar] [CrossRef]
- Xiong, W.; Hickstein, D.D.; Schnitzenbaumer, K.J.; Ellis, J.L.; Palm, B.B.; Keister, K.E.; Ding, C.; Miaja-Avila, L.; Dukovic, G.; Jimenez, J.L.; et al. Photoelectron Spectroscopy of CdSe Nanocrystals in the Gas Phase: A Direct Measure of the Evanescent Electron Wave Function of Quantum Dots. Nano Lett. 2013, 13, 2924–2930. [Google Scholar] [CrossRef]
- Song, E.; Nguyen, H.T.; Park, J.; Tran, T.T.; Kumar, M.; Bhatt, V.; Dao, V.A.; Lee, W.; Yun, J.H. Enhancement of photoconversion efficiency of CdSe quantum dots sensitized Al doped ZnO/Si heterojunction device decorated with Ag nanostructures. Mater. Sci. Semicond. Process. 2022, 149, 106878. [Google Scholar] [CrossRef]
- Fedorov, A.S.; Kuzubov, A.A.; Kholtobina, A.S.; Kovaleva, E.A.; Knaup, J.; Irle, S. Theoretical Investigation of Molecular and Electronic Structures of Buckminsterfullerene-Silicon Quantum Dot Systems. J. Phys. Chem. A 2016, 120, 9767–9775. [Google Scholar] [CrossRef] [PubMed]
- Fominykh, N.; Berakdar, J. Quantum Size and Correlation Effects in the Double Excitation Spectrum of a Quantum Dot. Surf. Sci. 2001, 482–485, 618–624. [Google Scholar] [CrossRef]
- Fominykh, N.; Kidun, O.; Ernst, A.; Berakdar, J. The Ejection of a Correlated Electron Pair from a Quantum Dot. J. Phys. B At. Mol. Opt. Phys. 2003, 36, 1–9. [Google Scholar] [CrossRef]
- Reimann, S.M.; Manninen, M. Electronic Structure of Quantum Dots. Rev. Mod. Phys. 2002, 74, 1283–1342. [Google Scholar] [CrossRef]
- Katriel, J.; Montgomery, H.E., Jr. Atomic vs. Quantum Dot Open Shell Spectra. J. Chem. Phys. 2017, 146, 064104. [Google Scholar] [CrossRef]
- Schooss, D.; Mews, A.; Eychmüller, A.; Weller, H. Quantum-dot quantum well CdS/HgS/CdS: Theory and experiment. Phys. Rev. B 1994, 49, 17072. [Google Scholar] [CrossRef]
- Bednarek, S.; Szafran, B.; Adamowski, J. Many-electron Artificial Atoms. Phys. Rev. B 1999, 59, 13036. [Google Scholar] [CrossRef]
- Szafran, B.; Adamowski, J.; Bednarek, S. Ground and Excited States of Few-Electron Systems in Spherical Quantum Dots. Phys. E (Amst. Neth.) 1999, 4, 1–10. [Google Scholar] [CrossRef]
- Adamowski, J.; Sobkowicz, M.; Szafran, B.; Bednarek, S. Electron Pair in a Gaussian Confining Potential. Phys. Rev. B Condens. Matter Mater. Phys. 2000, 62, 4234. [Google Scholar] [CrossRef]
- Bylicki, M.; Jaskolski, W.; Stachow, A.; Diaz, J. Resonance States of Two-Electron Quantum Dots. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 72, 075434. [Google Scholar] [CrossRef]
- Sajeev, Y.; Moiseyev, N. Theory of autoionization and photoionization in two-electron spherical quantum dots. Phys. Rev. B 2008, 78, 075316. [Google Scholar] [CrossRef]
- Nikolopoulos, L.A.A.; Bachau, H. Theory of photoionization of two-electron quantum dots in the resonance region in THz and mid-IR fields. Phys. Rev. A 2016, 94, 053409. [Google Scholar] [CrossRef]
- Bachau, H.; Nikolopoulos, L.A.A. Direct and Sequential Two-Photon Double Ionization of Two-Electron Quantum Dots. J. Phys. Chem. A 2018, 122, 1574. [Google Scholar] [CrossRef] [PubMed]
- Prior, A.; Bachau, H.; Nikolopoulos, L.A.A. Radial and Angular Electron Ejection Patterns of Two-electron Quantum Dots in THz fields. Atoms 2020, 8, 38. [Google Scholar] [CrossRef]
- Bachau, H.; Cormier, E.; Decleva, P.; Hansen, J.E.; Martin, F. Applications of B-splines in atomic and molecular physics. Rep. Prog. Phys. 2001, 64, 1815–1943. [Google Scholar] [CrossRef]
- Nikolopoulos, L.A.A. Electromagnetic transitions between states satisfying free-boundary conditions. Phys. Rev. A 2006, 73, 043408. [Google Scholar] [CrossRef]
- Madsen, L.B.; Nikolopoulos, L.A.A.; Kjeldsen, T.K. Extracting continuum information from Ψ(t) in time-dependent wave-packet calculations. Phys. Rev. A 2007, 76, 063407. [Google Scholar] [CrossRef]
- Lambropoulos, P.; Nikolopoulos, L.A.A. Angular distributions in double-ionization of helium under XUV sub-femtosecond radiation. New J. Phys. 2008, 10, 025012. [Google Scholar] [CrossRef]
- Nikolopoulos, L.A.A. Time-dependent theory of angular correlations in sequential double-ionization. Phys. Rev. Lett. 2013, 111, 093001. [Google Scholar] [CrossRef]
- Bahar, M.K.; Soylu, A. Two-Electron Pseudodot System With Laser Effect in Plasmas. IEEE Trans. Plasma Sci. 2019, 47, 1713. [Google Scholar] [CrossRef]
- Raj, P.; Pananghat, B. A balancing act of two electrons on a symmetric double-well barrier in a high frequency oscillating field. Phys. Chem. Chem. Phys. 2019, 21, 3184–3194. [Google Scholar] [CrossRef] [PubMed]
- Khachatryan, K.S.; Mkrtchyan, M.A. Quasi-Conical Quantum Dot Helium Optics and Its Applications; Springer Proceedings in Physics; Springer: Cham, Switzerland, 2022; pp. 101–111. [Google Scholar]
1 s.a.u. | Conventional Units |
---|---|
length | 2.645 nm |
time | 6.047 fs |
energy | 108.84 meV |
Intensity | 4.119 W/cm |
State | QD | QD |
---|---|---|
Ground | −365.2 | −232.9 |
1st (Excited) | −230.01 | −69.7 |
2nd (Excited) | −229.95 | −3.3 |
3rd (Excited) | −229.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prior, A.; Nikolopoulos, L.A.A. Dynamics of Correlated Double-Ionization of Two-Electron Quantum Dots in Laser Fields. Materials 2023, 16, 1405. https://doi.org/10.3390/ma16041405
Prior A, Nikolopoulos LAA. Dynamics of Correlated Double-Ionization of Two-Electron Quantum Dots in Laser Fields. Materials. 2023; 16(4):1405. https://doi.org/10.3390/ma16041405
Chicago/Turabian StylePrior, Adam, and Lampros A. A. Nikolopoulos. 2023. "Dynamics of Correlated Double-Ionization of Two-Electron Quantum Dots in Laser Fields" Materials 16, no. 4: 1405. https://doi.org/10.3390/ma16041405
APA StylePrior, A., & Nikolopoulos, L. A. A. (2023). Dynamics of Correlated Double-Ionization of Two-Electron Quantum Dots in Laser Fields. Materials, 16(4), 1405. https://doi.org/10.3390/ma16041405