Experimental and Numerical Study of the Influence of Pre-Existing Impact Damage on the Low-Velocity Impact Response of CFRP Panels
Abstract
:1. Introduction
2. Experimental Study
3. Numerical Simulation
3.1. Material Constitutive and Damage Model
3.2. Damage Model for the Interface
3.3. Finite Element Models
3.4. Parametric Study
4. Results and Discussion
4.1. Verification of the FE Simulations
4.2. Low-Velocity Impact on Skin Panels
4.3. Effect of the Impact Location
4.4. Effect of Pre-Existing Impact Damage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sławski, S.; Szymiczek, M.; Kaczmarczyk, J.; Domin, J.; Świtoński, E. Low Velocity Impact Response and Tensile Strength of Epoxy Composites with Different Reinforcing Materials. Materials 2020, 13, 3059. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Ma, M.; Jiang, M.; Sun, L.; Zhang, L.; Jia, L.; Tian, A.; Liang, J. Experimental Investigation of Impactor Diameter Effect on Low-Velocity Impact Response of CFRP Laminates in a Drop-Weight Impact Event. Materials 2020, 13, 4131. [Google Scholar] [CrossRef] [PubMed]
- Rezasefat, M.; Gonzalez-Jimenez, A.; Ma, D.; Vescovini, A.; Lomazzi, L.; da Silva, A.A.X.; Amico, S.C.; Manes, A. Experimental Study on the Low-Velocity Impact Response of Inter-Ply S2-Glass/Aramid Woven Fabric Hybrid Laminates. Thin Walled Struct. 2022, 177, 109458. [Google Scholar] [CrossRef]
- Tan, W.; Falzon, B.G.; Chiu, L.N.S.; Price, M. Predicting Low Velocity Impact Damage and Compression-After-Impact (CAI) Behaviour of Composite Laminates. Compos. Part A Appl. Sci. Manuf. 2015, 71, 212–226. [Google Scholar] [CrossRef] [Green Version]
- Bogenfeld, R.; Kreikemeier, J.; Wille, T. Review and Benchmark Study on the Analysis of Low-Velocity Impact on Composite Laminates. Eng. Fail. Anal. 2018, 86, 72–99. [Google Scholar] [CrossRef]
- Li, N.; Chen, P.H. Micro-Macro FE Modeling of Damage Evolution in Laminated Composite Plates Subjected to Low Velocity Impact. Compos. Struct. 2016, 147, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Rezasefat, M.; Amico, S.C.; Giglio, M.; Manes, A. A Numerical Study on the Influence of Strain Rate in Finite-Discrete Element Simulation of the Perforation Behaviour of Woven Composites. Polymers 2022, 14, 4279. [Google Scholar] [CrossRef]
- Singh, H.; Mahajan, P. Modeling Damage Induced Plasticity for Low Velocity Impact Simulation of Three Dimensional Fiber Reinforced Composite. Compos. Struct. 2015, 131, 290–303. [Google Scholar] [CrossRef]
- Balasubramaniam, K.; Ziaja, D.; Jurek, M.; Fiborek, P.; Malinowski, P. Experimental and Numerical Analysis of Multiple Low-Velocity Impact Damages in a Glass Fibered Composite Structure. Materials 2021, 14, 7268. [Google Scholar] [CrossRef]
- Lee, S.E.; Kim, D.U.; Cho, Y.J.; Seo, H.S. Multiple Impact Damage in GLARE Laminates: Experiments and Simulations. Materials 2021, 14, 7800. [Google Scholar] [CrossRef]
- Sadighi, M.; Alderliesten, R. Impact Fatigue, Multiple and Repeated Low-Velocity Impacts on FRP Composites: A Review. Compos. Struct. 2022, 297, 115962. [Google Scholar] [CrossRef]
- Katunin, A.; Pawlak, S.; Wronkowicz-Katunin, A.; Tutajewicz, D. Damage Progression in Fibre Reinforced Polymer Composites Subjected to Low-Velocity Repeated Impact Loading. Compos. Struct. 2020, 252, 112735. [Google Scholar] [CrossRef]
- Liao, B.; Zhou, J.; Li, Y.; Wang, P.; Xi, L.; Gao, R.; Bo, K.; Fang, D. Damage Accumulation Mechanism of Composite Laminates Subjected to Repeated Low Velocity Impacts. Int. J. Mech. Sci. 2020, 182, 105783. [Google Scholar] [CrossRef]
- Dogan, A. Single and Repeated Low-Velocity Impact Response of E-Glass Fiber-Reinforced Epoxy and Polypropylene Composites for Different Impactor Shapes. J. Thermoplast. Compos. Mater. 2022, 35, 320–336. [Google Scholar] [CrossRef]
- Sugun, B.S.; Rao, R.M.V.G.K. Impactor Mass Effects in Glass–Epoxy Composites Subjected to Repeated Drop Tests. J. Reinf. Plast. Compos. 2016, 23, 1547–1560. [Google Scholar] [CrossRef]
- Sugun, B.S.; Rao, R.M.V.G.K. Low-Velocity Impact Characterization of Glass, Carbon and Kevlar Composites Using Repeated Drop Tests. J. Reinf. Plast. Compos. 2004, 23, 1583–1599. [Google Scholar] [CrossRef]
- de Morais, W.A.; Monteiro, S.N.; d’Almeida, J.R.M. Effect of the Laminate Thickness on the Composite Strength to Repeated Low Energy Impacts. Compos. Struct. 2005, 70, 223–228. [Google Scholar] [CrossRef]
- Saleh, M.N.; El-Dessouky, H.M.; Saeedifar, M.; De Freitas, S.T.; Scaife, R.J.; Zarouchas, D. Compression after Multiple Low Velocity Impacts of NCF, 2D and 3D Woven Composites. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105576. [Google Scholar] [CrossRef]
- Donadio, F.; Ferraro, P.; Lopresto, V.; Pagliarulo, V.; Papa, I.; Rippa, M.; Russo, P. Response of Glass/Carbon Hybrid Composites Subjected to Repeated Low Velocity Impacts. J. Compos. Mater. 2022, 56, 2789–2802. [Google Scholar] [CrossRef]
- Boria, S.; Scattina, A.; Belingardi, G. Experimental Investigation on a Fully Thermoplastic Composite Subjected to Repeated Impacts. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 6985–7002. [Google Scholar] [CrossRef]
- Icten, B.M. Repeated Impact Behavior of Glass/Epoxy Laminates. Polym. Compos. 2009, 30, 1562–1569. [Google Scholar] [CrossRef]
- David-West, O.S.; Nash, D.H.; Banks, W.M. An Experimental Study of Damage Accumulation in Balanced CFRP Laminates due to Repeated Impact. Compos. Struct. 2008, 83, 247–258. [Google Scholar] [CrossRef]
- Atas, C.; Icten, B.M.; Küçük, M. Thickness Effect on Repeated Impact Response of Woven Fabric Composite Plates. Compos. Part B Eng. 2013, 49, 80–85. [Google Scholar] [CrossRef]
- Rezasefat, M.; Giglio, M.; Manes, A. Numerical Investigation of the Effect of Open Holes on the Impact Response of CFRP Laminates. Appl. Compos. Mater. 2022, 29, 1555–1578. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, P.; Wang, S. Numerical Investigation on the Repeated Low-Velocity Impact Behavior of Composite Laminates. Compos. Part B Eng. 2020, 185, 107771. [Google Scholar] [CrossRef]
- Rezasefat, M.; Gonzalez-Jimenez, A.; Giglio, M.; Manes, A. Numerical Study on the Dynamic Progressive Failure due to Low-Velocity Repeated Impacts in Thin CFRP Laminated Composite Plates. Thin Walled Struct. 2021, 167, 108220. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, B.; Wang, S. Finite Element Analysis on Impact Response and Damage Mechanism of Composite Laminates under Single and Repeated Low-Velocity Impact. Aerosp. Sci. Technol. 2022, 129, 107810. [Google Scholar] [CrossRef]
- Liao, B.B.; Liu, P.F. Finite Element Analysis of Dynamic Progressive Failure of Plastic Composite Laminates under Low Velocity Impact. Compos. Struct. 2017, 159, 567–578. [Google Scholar] [CrossRef]
- Rezasefat, M.; Gonzalez-Jimenez, A.; Giglio, M.; Manes, A. An Evaluation of Cuntze and Puck Inter Fibre Failure Criteria in Simulation of Thin CFRP Plates Subjected to Low Velocity Impact. Compos. Struct. 2021, 114654. [Google Scholar] [CrossRef]
- Hale, P.; Ng, E. gene Non-Linear Material Characterization of CFRP with FEM Utilizing Cohesive Surface Considerations Validated with Effective Tensile Test Fixturing. Mater. Today Commun. 2020, 23, 100872. [Google Scholar] [CrossRef]
- Donadon, M.V.; Iannucci, L.; Falzon, B.G.; Hodgkinson, J.M.; de Almeida, S.F.M. A Progressive Failure Model for Composite Laminates Subjected to Low Velocity Impact Damage. Comput. Struct. 2008, 86, 1232–1252. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Silberschmidt, V.V.; Roy, A. Damage Accumulation in Braided Textiles-Reinforced Composites under Repeated Impacts: Experimental and Numerical Studies. Compos. Struct. 2018, 204, 256–267. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Ji, C.; Chen, S.; Li, S.; Zou, Y.; Zhou, Z.; Wang, B. Two-Position Impact Behavior and Interference Mechanism of CFF/PEEK Thermoplastic Composites. Int. J. Mech. Sci. 2022, 232, 107644. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Coelho, S.R.M.; Bezazi, A. Effect of Impact Position on Repaired Composite Laminates Subjected to Multi-Impacts. Materials 2022, 15, 8039. [Google Scholar] [CrossRef]
- Nassir, N.A.; Guan, Z.W.; Birch, R.S.; Cantwell, W.J. Damage Initiation in Composite Materials under Off-Centre Impact Loading. Polym. Test. 2018, 69, 456–461. [Google Scholar] [CrossRef]
- Liao, B.; Wang, P.; Zheng, J.; Cao, X.; Li, Y.; Ma, Q.; Tao, R.; Fang, D. Effect of Double Impact Positions on the Low Velocity Impact Behaviors and Damage Interference Mechanism for Composite Laminates. Compos. Part A Appl. Sci. Manuf. 2020, 136, 105964. [Google Scholar] [CrossRef]
- Huang, L.; Sun, J.; Zhang, D.; Zhao, J. Numerical Investigation on Composite Laminates under Double-Position Low-Velocity Impacts. J. Reinf. Plast. Compos. 2022, 073168442211474. [Google Scholar] [CrossRef]
- ASTM D7136/D7136M-15; Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight. Impact Event, ASTM Int; ASTM International: West Conchhocken, PA, USA, 2015.
- Puck, A.; Kopp, J.; Knops, M. Guidelines for the Determination of the Parameters in Puck’s Action Plane Strength Criterion. Compos. Sci. Technol. 2002, 62, 371–378. [Google Scholar] [CrossRef]
- Puck, A.; Schürmann, H. Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models. In Failure Criteria in Fibre-Reinforced-Polymer Composites; Elsevier Ltd.: Amsterdam, The Netherlands, 2004; pp. 832–876. ISBN 9780080531571. [Google Scholar]
- Rezasefat, M.; Torres, D.B.; Gonzalez-Jimenez, A.; Giglio, M.; Manes, A. A Fast Fracture Plane Orientation Search Algorithm for Puck’s 3D IFF Criterion for UD Composites. Mater. Today Commun. 2021, 28, 102700. [Google Scholar] [CrossRef]
- Falzon, B.G.; Apruzzese, P. Numerical Analysis of Intralaminar Failure Mechanisms in Composite Structures. Part I: FE Implementation. Compos. Struct. 2011, 93, 1039–1046. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Oh, B.H. Crack Band Theory for Fracture of Concrete. Matériaux Constr. 1983, 16, 155–177. [Google Scholar] [CrossRef] [Green Version]
- Benzeggagh, M.L.; Kenane, M. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus. Compos. Sci. Technol. 1996. [Google Scholar] [CrossRef]
- González, E.V.; Maimí, P.; Camanho, P.P.; Lopes, C.S.; Blanco, N. Effects of Ply Clustering in Laminated Composite Plates under Low-Velocity Impact Loading. Compos. Sci. Technol. 2011, 71, 805–817. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.-H.; Rim, M.-S.; Lee, I.; Hwang, T.-K. Composite Damage Model Based on Continuum Damage Mechanics and Low Velocity Impact Analysis of Composite Plates. Compos. Struct. 2013, 95, 123–134. [Google Scholar] [CrossRef]
- ABAQUS 2016 Documentation; ABAQUS Theory Manual. Dassault Systèmes: Paris, France, 2017.
- Lin, S.; Thorsson, S.I.; Waas, A.M. Predicting the Low Velocity Impact Damage of a Quasi-Isotropic Laminate Using EST. Compos. Struct. 2020, 251, 112530. [Google Scholar] [CrossRef]
- Li, X.; Ma, D.; Liu, H.; Tan, W.; Gong, X.; Zhang, C.; Li, Y. Assessment of Failure Criteria and Damage Evolution Methods for Composite Laminates under Low-Velocity Impact. Compos. Struct. 2019, 207, 727–739. [Google Scholar] [CrossRef]
- Liu, P.F.; Liao, B.B.; Jia, L.Y.; Peng, X.Q. Finite Element Analysis of Dynamic Progressive Failure of Carbon Fiber Composite Laminates under Low Velocity Impact. Compos. Struct. 2016, 149, 408–422. [Google Scholar] [CrossRef]
Laminae Properties | Interface Properties | ||
---|---|---|---|
[GPa] | 157.5 * | [ | 5 *** |
[GPa] | 9.9 * | N [MPa] | 33.0 *** |
[GPa] | 4.95 * | T [MPa] | 54.0 *** |
[GPa] | 3.21 * | 0.6 *** | |
[MPa] | 10.2 *, −0.5 *, 0.1 * | 2.1 *** | |
0.24 * | |||
0.35 ** | |||
[MPa] | 2550.0 * | ||
[MPa] | 1350.0 ** | ||
[MPa] | 57.5 * | ||
[MPa] | 199.8 ** | ||
[MPa] | 97.0 * | ||
[N/mm] | 133.0 **, 40.0 ** | ||
[N/mm] | 0.6 **, 2.1 ** |
Single Impacts at Different Locations | Double Impact at Different Locations | |||
---|---|---|---|---|
Location | Impact Energy (J) | Code | Impact Energy (J) | Code |
Center | 25 | S-C-25 J | - | - |
35 | S-C-35 J | - | - | |
40 | S-C-40 J | - | - | |
S1 | 25 | S-S1-25 J | 25 | D-S1-25 J |
35 | S-S1-35 J | 35 | D-S1-35 J | |
40 | S-S1-40 J | 40 | D-S1-40 J | |
S2 | 25 | S-S2-25 J | 25 | D-S2-25 J |
35 | S-S2-35 J | 35 | D-S2-35 J | |
40 | S-S2-40 J | 40 | D-S2-40 J | |
S3 | 25 | S-S3-25 J | 25 | D-S3-25 J |
35 | S-S3-35 J | 35 | D-S3-35 J | |
40 | S-S3-40 J | 40 | D-S3-40 J | |
S4 | 25 | S-S4-25 J | 25 | D-S4-25 J |
35 | S-S4-35 J | 35 | D-S4-35 J | |
40 | S-S4-40 J | 40 | D-S4-40 J |
Impact Energy | Absorbed Energy | Delamination Area | ||||
---|---|---|---|---|---|---|
Experimental (J) | Numerical | Experimental (mm2) | Numerical | |||
Value (J) | Error (%) | Value (mm2) | Error (%) | |||
8 J | 3.41 | 2.98 | −12.6 | 420 | 406 | −3.3 |
10 J | 4.43 | 3.82 | −13.7 | 605 | 567 | −6.3 |
12 J | 4.88 | 4.57 | −6.3 | 750 | 739 | −1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezasefat, M.; Beligni, A.; Sbarufatti, C.; Amico, S.C.; Manes, A. Experimental and Numerical Study of the Influence of Pre-Existing Impact Damage on the Low-Velocity Impact Response of CFRP Panels. Materials 2023, 16, 914. https://doi.org/10.3390/ma16030914
Rezasefat M, Beligni A, Sbarufatti C, Amico SC, Manes A. Experimental and Numerical Study of the Influence of Pre-Existing Impact Damage on the Low-Velocity Impact Response of CFRP Panels. Materials. 2023; 16(3):914. https://doi.org/10.3390/ma16030914
Chicago/Turabian StyleRezasefat, Mohammad, Alessio Beligni, Claudio Sbarufatti, Sandro Campos Amico, and Andrea Manes. 2023. "Experimental and Numerical Study of the Influence of Pre-Existing Impact Damage on the Low-Velocity Impact Response of CFRP Panels" Materials 16, no. 3: 914. https://doi.org/10.3390/ma16030914
APA StyleRezasefat, M., Beligni, A., Sbarufatti, C., Amico, S. C., & Manes, A. (2023). Experimental and Numerical Study of the Influence of Pre-Existing Impact Damage on the Low-Velocity Impact Response of CFRP Panels. Materials, 16(3), 914. https://doi.org/10.3390/ma16030914