# Review of Approaches to Minimise the Cost of Simulation-Based Optimisation for Liquid Composite Moulding Processes

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Parallel Computing

- (i)
- the number of processing units, or
- (ii)
- the size of the problem, depending on the hardware’s parallel architecture. Note, only a minor proportion of all contemporary algorithms can be decomposed into completely independent pieces, enabling the theoretical linear speedup.

## 3. Time Integration for Numerical Simulation Computation

_{step}= T

_{process}), solving such problems in just a single time step [31,35,37,39], as schematically depicted in Figure 5.

## 4. Problem Transformation

## 5. Search-Space Reduction

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Blythe, A.; Fox, B.; Nikzad, M.; Eisenbart, B.; Chai, B.X. Stiffness Degradation under Cyclic Loading Using Three-Point Bending of Hybridised Carbon/Glass Fibres with a Polyamide 6,6 Nanofibre Interlayer. J. Compos. Sci.
**2022**, 6, 270. [Google Scholar] [CrossRef] - Blythe, A.; Fox, B.; Nikzad, M.; Eisenbart, B.; Chai, B.X.; Blanchard, P.; Dahl, J. Evaluation of the Failure Mechanism in Polyamide Nanofibre Veil Toughened Hybrid Carbon/Glass Fibre Composites. Materials
**2022**, 15, 8877. [Google Scholar] [CrossRef] [PubMed] - Yu, C.; Song, Y.S. Enhancing energy harvesting efficiency of form stable phase change materials by decreasing surface roughness. J. Energy Storage
**2023**, 58, 106360. [Google Scholar] [CrossRef] - Capricho, J.C.; Liao, T.; Chai, B.X.; Al-Qatatsheh, A.; Vongsvivut, J.; Kingshott, P.; Juodkazis, S.; Fox, B.L.; Hameed, N. Magnetically Cured Macroradical Epoxy as Antimicrobial Coating. Chem. Asian J.
**2023**, 18, e202300237. [Google Scholar] [CrossRef] [PubMed] - Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Blythe, A.; Bwar, K.H.; Wang, J.; Du, Y.; Shevtsov, S. Application of KNN and ANN Metamodeling for RTM Filling Process Prediction. Materials
**2023**, 16, 6115. [Google Scholar] [CrossRef] [PubMed] - Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Blythe, A.; Blanchard, P.; Dahl, J. A novel heuristic optimisation framework for radial injection configuration for the resin transfer moulding process. Compos. Part A Appl. Sci. Manuf.
**2023**, 165, 107352. [Google Scholar] [CrossRef] - Achim, V.; Ruiz, E. Guiding selection for reduced process development time in RTM. Int. J. Mater. Form.
**2010**, 3, 1277–1286. [Google Scholar] [CrossRef] - Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Blythe, A.; Blanchard, P.; Dahl, J. Simulation-based optimisation for injection configuration design of liquid composite moulding processes: A review. Compos. Part A Appl. Sci. Manuf.
**2021**, 149, 106540. [Google Scholar] [CrossRef] - Shevtsov, S.; Zhilyaev, I.; Chang, S.H.; Snezhina, N.; Chai, B.X. Modeling Post-Infusion Application of Controlled External Pressure to a Polymer Composite Part. Int. J. Eng. Res. Mech. Civ. Eng. (IJERMCE)
**2023**, 10, 29–37. [Google Scholar] - Tekin, E.; Sabuncuoglu, I. Simulation optimization: A comprehensive review on theory and applications. IIE Trans.
**2004**, 36, 1067–1081. [Google Scholar] [CrossRef] - Aguado, J.V.; Borzacchiello, D.; Ghnatios, C.; Lebel, F.; Upadhyay, R.; Binetruy, C.; Chinesta, F. A Simulation App based on reduced order modeling for manufacturing optimization of composite outlet guide vanes. Adv. Model. Simul. Eng. Sci.
**2017**, 4, 1. [Google Scholar] [CrossRef] - Park, C.H.; Saouab, A.; Bréard, J.; Riche, R.L. Simple models for mold filling stage in liquid composite molding and their applications to structure-process coupled optimization. In Proceedings of the 8th International Conference on Flow Processes in Composite Materials (FPCM8), Douai, France, 11–13 July 2006; pp. 289–296. [Google Scholar]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput.
**1997**, 1, 67–82. [Google Scholar] [CrossRef] - Censor, Y.; Zenios, S. Parallel Optimization: Theory, Algorithms, and Applications; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Fu, M.C. Handbook of Simulation Optimization; Springer: New York, NY, USA, 2014. [Google Scholar]
- Rensink, A.; Cuadrado, J.S. Theory and Practice of Model Transformation. In Proceedings of the 11th International Conference (ICMT 2018), Toulouse, France, 25–26 June 2018. [Google Scholar]
- Trobec, R.; Vajteršic, M.; Zinterhof, P. Parallel Computing: Numerics, Applications, and Trends; Springer Verlag London Limited: London, UK, 2009. [Google Scholar]
- Ho, Y.C. An explanation of ordinal optimization: Soft computing for hard problems. Inf. Sci.
**1999**, 113, 169–192. [Google Scholar] [CrossRef] - Fu, M.C. Optimization for simulation: Theory vs Practice. INFORMS J. Comput.
**2002**, 14, 192–215. [Google Scholar] [CrossRef] - Chebil, N.; Deléglise-Lagardère, M.; Park, C.H. Efficient numerical simulation method for three dimensional resin flow in laminated preform during liquid composite molding processes. Compos. Part A Appl. Sci. Manuf.
**2019**, 125, 105519. [Google Scholar] [CrossRef] - Liu, J.; Xie, J.; Chen, L. A hybrid optimization algorithm for gate locations in the liquid composite molding process. Text. Res. J.
**2022**, 1, 1–9. [Google Scholar] [CrossRef] - Hussein, M.; Eltoukhy, A.E.E.; Darko, A.; Eltawil, A. Simulation-Optimization for the Planning of Off-Site Construction Projects: A Comparative Study of Recent Swarm Intelligence Metaheuristics. Sustainability
**2021**, 13, 13551. [Google Scholar] [CrossRef] - Lin, M.Y.; Murphy, M.J.; Hahn, H.T. Resin transfer molding process optimization. Compos. Part A Appl. Sci. Manuf.
**2000**, 31, 361–371. [Google Scholar] [CrossRef] - Spall, J.C. Introduction to Stochastic Search and Optimization; Wiley-Interscience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Šimáček, P.; Advani, S.G. Desirable features in mold filling simulations for Liquid Composite Molding processes. Polym. Compos.
**2004**, 25, 355–367. [Google Scholar] [CrossRef] - Gokce, A.; Advani, S.G. Vent location optimization using Map-Based Exhaustive Search in Liquid Composite Molding processes. Mater. Manuf. Process.
**2004**, 19, 523–548. [Google Scholar] [CrossRef] - Li, J.; Zhang, C.; Liang, R.; Wang, B. Robust design of composites manufacturing processes with process simulation and optimisation methods. Int. J. Prod. Res.
**2008**, 46, 2087–2104. [Google Scholar] [CrossRef] - Kessels, J.F.A.; Jonker, A.S.; Akkerman, R. Fully 2 1/2 D flow modeling of resin infusion under flexible tooling using unstructured meshes and wet and dry compaction properties. Compos. Part A Appl. Sci. Manuf.
**2007**, 38, 51–60. [Google Scholar] [CrossRef] - Soukane, S.; Trochu, F. New Remeshing Applications in Resin Transfer Molding. J. Reinf. Plast. Compos.
**2005**, 24, 1629–1653. [Google Scholar] [CrossRef] - Voller, V.R.; Peng, S.; Chen, Y.F. Numerical solution of transient, free surface problems in porous media. Int. J. Numer. Methods Eng.
**1996**, 39, 2889–2906. [Google Scholar] [CrossRef] - Jiang, S.; Duan, Y. An interface-update-based implicit algorithm for mold filling simulation of liquid composite molding. Polym. Compos.
**2006**, 27, 271–281. [Google Scholar] [CrossRef] - Young, W.B.; Fong, K.H.L.H.; Lee, L.J. Flow simulation in molds with preplaced fiber mats. Polym. Compos.
**1991**, 12, 391–403. [Google Scholar] [CrossRef] - Mohan, R.V.; Ngo, N.D.; Tamma, K.K. Three-dimensional reisn transfer molding: Isothermal process modeling and implicit tracking of moving fronts for thick, geometrically complex composites manufacturing applications—Part 2. Numer. Heat Transf. Part A Appl.
**1999**, 35, 839–858. [Google Scholar] - Chinesta, F.; Ladeveze, P.; Cueto, E. A Short Review on Model Order Reduction Based on Proper Generalized Decomposition. Arch. Comput. Methods Eng.
**2011**, 18, 395. [Google Scholar] [CrossRef] - Voller, V.R.; Chen, Y.F. Prediction of filling times of porous cavities. Int. J. Numer. Methods Fluids
**1996**, 23, 661–672. [Google Scholar] [CrossRef] - Minaie, B.; Chen, Y.F. Adaptive Control of Filling Pattern in Resin Transfer Molding Process. J. Compos. Mater.
**2005**, 39, 1497–1513. [Google Scholar] [CrossRef] - Chen, Y.F.; Stelson, K.A.; Vollert, V.R. Prediction of Filling Time and Vent Locations for Resin Transfer Molds. J. Compos. Mater.
**1997**, 31, 1141–1161. [Google Scholar] [CrossRef] - Samir, J.; Echaabi, J.; Hattabi, M. Numerical algorithm and adaptive meshing for simulation the effect of variation thickness in resin transfer molding process. Compos. Part B Eng.
**2011**, 42, 1015–1028. [Google Scholar] [CrossRef] - Lin, M.; Hahn, H.T.; Huh, H. A finite element simulation of resin transfer molding based on partial nodal saturation and implicit time integration. Compos. Part A Appl. Sci. Manuf.
**1998**, 29, 541–550. [Google Scholar] [CrossRef] - Park, C.H. Chapter 15: Numerical simulation of flow processes in composites manufacturing. In Advances in Composites Manufacturing and Process Design; Boisse, P., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 317–378. [Google Scholar]
- Ratle, F.; Achim, V.; Trochu, F. Evolutionary operators for optimal gate location in liquid composite moulding. Appl. Soft Comput.
**2009**, 9, 817–823. [Google Scholar] [CrossRef] - Wang, J.; Simacek, P.; Advani, S.G. Use of medial axis to find optimal channel designs to reduce mold filling time in resin transfer molding. Compos. Part A Appl. Sci. Manuf.
**2017**, 95, 161–172. [Google Scholar] [CrossRef] - Klunker, F.; Ziegmann, G. A fast solution method for modeling the RTM-process using simplified geometries. In Proceedings of the 8th Internation Conference on Flow Processes in Composite Materials, Douai, France, 11–13 July 2006; pp. 307–314. [Google Scholar]
- Panda, N.; Majhi, S.K. Improved salp swarm algorithm with space transformation search for training Neural Network. Arab. J. Sci. Eng.
**2020**, 45, 2743–2761. [Google Scholar] [CrossRef] - Ruiz, E.; Achim, V. RTM process analysis and on-line characterization. In Proceedings of the 17th International Conferences on Composite Materials (ICCM17), Edinburgh, UK, 27–31 July 2009. [Google Scholar]
- Zille, H.; Ishibuchi, H.; Mostaghim, S.; Nojima, Y. A Framework for Large-Scale Multiobjective Optimization Based on Problem Transformation. IEEE Trans. Evol. Comput.
**2018**, 22, 260–275. [Google Scholar] [CrossRef] - Qayum, F.; Heckel, R. Local Search-Based Refactoring as Graph Transformation. In Proceedings of the 1st International Symposium on Search Based Software Engineering, Windsor, UK, 13–15 May 2009; pp. 43–46. [Google Scholar]
- Benfenati, A.; Chouzenoux, E.; Duval, L.; Pesquet, J.-C.; Pirayre, A. A review on graph optimization and algorithmic frameworks. LIGM—Lab. D’informatique Gaspard-Monge
**2018**, hal-01901499. [Google Scholar] - Lohmann, B.; Bechtold, T.; Eberhard, P.; Fehr, J.; Rixen, D.J.; Varona, M.C.; Lerch, C.; Yuan, C.D.; Rudnyi, E.B.; Frohlich, B.; et al. Chapter 2: Model order reduction in mechanical engineering. In Model Order Reduction; De Gruyter: Berlin, Germany, 2021; Volume 3, pp. 33–74. [Google Scholar]
- Wang, H.; Wu, Z.; Liu, Y.; Wang, J.; Jiang, D.; Chen, L. Space transformation search: A new evolutionary technique. In Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, Shanghai, China, 12–14 June 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 537–544. [Google Scholar]
- Ye, X.; Zhang, C.; Liang, Z.; Wang, B. Heuristic algorithm for determining optimal gate and vent locations for RTM process design. J. Manuf. Syst.
**2004**, 23, 267–277. [Google Scholar] [CrossRef] - Capricho, J.C.; Subhani, K.; Chai, B.X.; Bryant, G.; Salim, N.; Juodkazis, S.; Fox, B.L.; Hameed, N. Porous macroradical epoxy-based supercapacitors. Polymer
**2022**, 259, 125356. [Google Scholar] [CrossRef] - Gokce, A.; Hsiao, K.-T.; Advani, S.G. Branch and bound search to optimize injection gate locations in liquid composite molding processes. Compos. Part A Appl. Sci. Manuf.
**2002**, 33, 1263–1272. [Google Scholar] [CrossRef] - Sánchez, F.; Domenech, L.; García, V.; Montés, N.; Falcó, A.; Cueto, E.; Chinesta, F.; Fideu, P. Fast and reliable gate arrangement pre-design of resin infusion processes. Compos. Part A Appl. Sci. Manuf.
**2015**, 77, 285–292. [Google Scholar] [CrossRef] - Wang, J.; Simacek, P.; Advani, S. Use of Centroidal Voronoi Diagram to find optimal gate locations to minimize mold filling time in resin transfer molding. Compos. Part A Appl. Sci. Manuf.
**2016**, 87, 243–255. [Google Scholar] [CrossRef] - Jiang, S.; Zhang, C.; Wang, B. Optimum arrangement of gate and vent locations for RTM process design using a mesh distance-based approach. Compos. Part A Appl. Sci. Manuf.
**2002**, 33, 471–481. [Google Scholar] [CrossRef] - Chen, C.-T.; Gu, G.X. Machine learning for composite materials. MRS Commun.
**2019**, 9, 556–566. [Google Scholar] [CrossRef] - Gou, J.; Zhang, C.; Liang, Z.; Wang, B.; Simpson, J. Resin Transfer Molding process optimization using numerical simulation and Design of Experiments approach. Polym. Compos.
**2003**, 24, 1–12. [Google Scholar] [CrossRef] - Kessels, J.F.; Jonker, A.S.; Akkerman, R. Optimising the flow pipe arrangement for resin infusion under flexible tooling. Compos. Part A Appl. Sci. Manuf.
**2007**, 38, 2076–2085. [Google Scholar] [CrossRef] - Wang, J.; Simacek, P.; Advani, S.G. Fast mold filling simulation based on the geodesic distance calculation algorithm for Liquid Composite Molding processes. CMES—Comput. Model. Eng. Sci.
**2015**, 107, 59–79. [Google Scholar] - Matveev, M.Y.; Brown, L.P.; Long, A.C. Efficient meshing technique for textile composites unit cells of arbitrary complexity. Compos. Struct.
**2020**, 254, 112757. [Google Scholar] [CrossRef] - Okonkwo, K.; Simacek, P.; Advani, S.; Parnas, R. Characterization of 3D fiber preform permeability tensor in radial flow using an inverse algorithm based on sensors and simulation. Compos. Part A Appl. Sci. Manuf.
**2011**, 42, 1283–1292. [Google Scholar] [CrossRef] - Cueto, E.; Ghnatios, C.; Chinesta, F.; Montes, N.; Sanchez, F.; Falco, A. Improving Computational Efficiency in LCM by Using Computational Geometry and Model Reduction Techniques. Key Eng. Mater.
**2014**, 611–612, 339–343. [Google Scholar] - Shojaei, A.; Ghaffarian, S.R.; Karimian, S.M.H. Modeling and simulation approaches in the resin transfer molding process: A review. Polym. Compos.
**2003**, 24, 525–544. [Google Scholar] [CrossRef] - Boccard, A.; Lee, W.I.; Springer, G.S. Model for Determining the Vent Locations and the Fill Time of Resin Transfer Molds. J. Compos. Mater.
**1995**, 29, 306–333. [Google Scholar] [CrossRef]

**Figure 4.**An example of the temporal evolution of a mould-filling simulation adopting the explicit time-integration scheme.

**Figure 5.**An example of the one-shot computation of a mould-filling simulation adopting the implicit time-integration scheme.

**Figure 7.**An example of search-space reduction for a car hood model, with the red region indicating the restricted search space excluded from the search process.

**Figure 9.**Mesh-density refinement: global mesh-density refinement (entire domain) and local mesh-density refinement (small rectangular area).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Wang, Y.; Bwar, K.H.; Zhang, K.
Review of Approaches to Minimise the Cost of Simulation-Based Optimisation for Liquid Composite Moulding Processes. *Materials* **2023**, *16*, 7580.
https://doi.org/10.3390/ma16247580

**AMA Style**

Chai BX, Eisenbart B, Nikzad M, Fox B, Wang Y, Bwar KH, Zhang K.
Review of Approaches to Minimise the Cost of Simulation-Based Optimisation for Liquid Composite Moulding Processes. *Materials*. 2023; 16(24):7580.
https://doi.org/10.3390/ma16247580

**Chicago/Turabian Style**

Chai, Boon Xian, Boris Eisenbart, Mostafa Nikzad, Bronwyn Fox, Yuqi Wang, Kyaw Hlaing Bwar, and Kaiyu Zhang.
2023. "Review of Approaches to Minimise the Cost of Simulation-Based Optimisation for Liquid Composite Moulding Processes" *Materials* 16, no. 24: 7580.
https://doi.org/10.3390/ma16247580