Maltitol-Derived Sacrificial Agent for Enhancing the Compatibility between PCE and Cement Paste
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of KN-lm
2.3. Test Methods
2.3.1. Mini Slump Test
2.3.2. TOC
2.3.3. XRD
2.3.4. Zeta Potential
2.3.5. Dispersibility of Mt with KN-lm in Water
2.3.6. SEM
3. Results
3.1. Effect of KN-lm on Clay
3.1.1. Influence of Different Synthetic Ratios on the Fluidity of Slurry
Containing Montmorillonite
3.1.2. Influence of Different Dosages on Fluidity of Slurry Containing Montmorillonite
3.2. TOC
3.3. XRD
3.4. Zeta
3.5. Dispersibility of Mt with KN-lm in Water
3.6. Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, S.W.; Cai, X.H.; He, Z.; Zhou, W.; Shao, H.Y.; Li, Z.J.; Wu, T.; Chen, E. The review of early hydration of cement–based materials by electrical methods. Constr. Build. Mater. 2017, 146, 15–29. [Google Scholar] [CrossRef]
- Yin, R.; Shen, P.; Lu, Z.Y. A green approach for the reduction of graphene oxide by the ultraviolet/sulfite process. J. Colloid Interface Sci. 2019, 550, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Marchon, D.; Boscaro, F.; Flatt, R.J. First steps to the molecular structure optimization of polycarboxylate ether superplasticizers: Mastering fluidity and retardation. Cem. Concr. Res. 2019, 115, 116–123. [Google Scholar] [CrossRef]
- Arend, J.; Wetzel, A.; Middendorf, B. In-situ investigation of superplasticizers: From fluorescence microscopy to concrete rheology. Cem. Concr. Res. 2018, 113, 178–185. [Google Scholar] [CrossRef]
- Lu, Z.; Yao, J.; Leung, C.K. Using graphene oxide to strengthen the bond between PE fiber and matrix to improve the strain hardening behavior of SHCC. Cem. Concr. Res. 2019, 126, 105899. [Google Scholar] [CrossRef]
- Theng, B. Clay-polymer interactions: Summary and perspectives. Clays Clay Miner. 1982, 30, 1–10. [Google Scholar] [CrossRef]
- Ait-Akbour, R.; Boustingorry, P.; Leroux, F.; Leising, F.; Taviot-Gueho, C. Adsorption of polycarboxylate poly(ethylene glycol) (PCP) esters on montmorillonite (Mmt): Effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure. J. Colloid. Interface Sci. 2015, 437, 227–234. [Google Scholar] [CrossRef]
- He, D.; Liang, R.; Zhao, J.; Liu, Z.P.; Lu, Z.Y.; Sun, G.X. Effect of ionic liquids in compatibility with PCE and cement paste containing clay. Constr. Build. Mater. 2020, 264, 120265. [Google Scholar] [CrossRef]
- Low, P.F.; White, J.L. Hydrogen bonding and polywater in clay-water systems. Clay Clay Miner. 1970, 18, 63–66. [Google Scholar] [CrossRef]
- Wu, B.; Chun, B.W.; Gu, L.; Kuhl, T.L. Adsorption properties of poly(carboxylate ether) to negatively charged surfaces in high-salt conditions. Cem. Concr. Res. 2019, 118, 102–110. [Google Scholar] [CrossRef]
- Xu, H.; Sun, S.; Wei, J.; Yu, Q.; Shao, Q.; Lin, C. b-Cyclodextrin as pendant groups of a polycarboxylate superplasticizer for enhancing clay tolerance. Ind. Chem. Res. 2015, 54, 9081–9088. [Google Scholar] [CrossRef]
- Qu, H.; Fu, C.; Yang, W.; Yang, Z.; Zhang, L. Preparation, application and water reducing mechanism of a novel fluorescent superplasticizer with improved flow retaining ability and clay tolerance. J. Disper. Sci. Technol. 2018, 39, 1829–1839. [Google Scholar] [CrossRef]
- Xing, G.; Wang, W.; Fang, G. Cement dispersion performance of superplasticisers in the presence of clay and interaction between superplasticisers and clay. Adv. Cem. Res. 2017, 29, 194–205. [Google Scholar] [CrossRef]
- Lei, L.; Plank, J. A concept for a polycarboxylate superplasticizer possessing enhanced clay tolerance. Cem. Concr. Res. 2012, 42, 1299–1306. [Google Scholar] [CrossRef]
- Zhou, Y.; Orozco, C.A.; Duque-Redondo, E.; Manzano, H.; Geng, G.Q.; Feng, P.; Monteiro, P.J.M.; Miao, C.W. Modification of poly(ethylene glycol) on the microstructure and mechanical properties of calcium silicate hydrates. Cem. Concr. Res. 2019, 115, 20–30. [Google Scholar] [CrossRef]
- Li, X.; Zheng, D.; Zheng, T.; Lin, X.L.; Lou, H.M.; Qiu, X.Q. Enhancement clay tolerance of PCE by ligninbased polyoxyethylene ether in montmorillonite-contained paste. J. Ind. Eng. Chem. 2017, 49, 168–175. [Google Scholar] [CrossRef]
- Plank, J.; Sakai, E.; Miao, C.W.; Yu, C.; Hong, J.X. Chemical admixtures-Chemistry, applications and their impact on concrete microstructure and durability. Cem. Concr. Res. 2015, 78, 81–99. [Google Scholar] [CrossRef]
- Ng, S.; Plank, J.S. Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers. Cem. Concr. Res. 2012, 42, 847–854. [Google Scholar] [CrossRef]
- Tregger, N.A.; Pakula, M.E.; Shah, S.P. Influence of clays on the rheology of cement pastes. Cem. Concr. Res. 2010, 40, 384–391. [Google Scholar] [CrossRef]
- Zhao, C.L.; Tang, X.D.; Lu, X. Study on the synthesis and performance of clay-inhibiting water reducer based on β-cyclodextrin. New Build. Mater. 2020, 47, 74–76. [Google Scholar]
- He, D.; Lu, Z.Y.; Liang, X.X.; Liu, R.J.; Sun, G.X. A study to improve the compatibility of PCE with cement paste containing clay. Mater. Lett. 2022, 308, 131111. [Google Scholar] [CrossRef]
- Yamada, K.; Takahashi, T.; Hanehara, S.; Matsuhisa, M. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cem. Concr. Res. 2000, 30, 197–207. [Google Scholar] [CrossRef]
- Lei, L.; Plank, J. Synthesis, working mechanism and effectiveness of a novel cycloaliphatic superplasticizer for concrete. Cem. Concr. Res. 2012, 42, 118–123. [Google Scholar] [CrossRef]
- Zingg, A.; Winnefeld, F.; Holzer, L.; Pakusch, J.; Becker, S.; Gauckler, L. Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases. J. Colloid Interface Sci. 2008, 323, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.B.; Gu, B.Q.; Ma, B.G.; Li, X.; Lin, C.L.; Li, X.G. Mechanism of intercalation of polycarboxylate superplasticizer into montmorillonite. Appl. Clay Sci. 2016, 129, 40–46. [Google Scholar] [CrossRef]
- Felekoglu, B.; Sarıkahya, H. Effect of chemical structure of polycarboxylate-based superplasticizers on workability retention of self-compacting concrete. Constr. Build. Mater. 2008, 22, 1972–1980. [Google Scholar] [CrossRef]
- Liu, X.; Guan, J.N.; Lai, G.H.; Zheng, Y.S.; Wang, Z.M.; Cui, S.P.; Lan, M.Z.; Li, H.Q. Novel designs of polycarboxylate superplasticizers for improving resistance in clay-contaminated concrete. J. Ind. Eng. Chem. 2017, 55, 80–90. [Google Scholar] [CrossRef]
- Tan, H.B.; Gu, B.Q.; Guo, Y.L.; Ma, B.G.; Huang, J.; Ren, J.; Zou, F.B.; Guo, Y.F. Improvement in compatibility of polycarboxylate superplasticizer with poor-quality aggregate containing montmorillonite by incorporating polymeric ferric sulfate. Constr. Build. Mater. 2018, 162, 566–575. [Google Scholar] [CrossRef]
- Qian, S.S.; Yao, Y.; Wang, Z.M.; Cui, S.P.; Liu, X.; Jiang, H.D.; Guo, Z.L.; Lai, G.H.; Xu, Q.; Guan, J.N. Synthesis, characterization and working mechanism of a novel polycarboxylate superplasticizer for concrete possessing reduced viscosity. Constr. Build. Mater. 2018, 169, 452–461. [Google Scholar] [CrossRef]
- Borralleras, P.; Segura, I.; Aranda, M.A.G.; Aguado, A. Influence of experimental procedure on d-spacing measurement by XRD of montmorillonite clay pastes containing PCE-based superplasticizer. Constr. Build. Mater. 2019, 220, 285–296. [Google Scholar] [CrossRef]
- Yamada, K.; Ogawa, S.; Hanehara, S. Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase. Cem. Concr. Res. 2001, 31, 375–383. [Google Scholar] [CrossRef]
- Pourchet, S.; Liautaud, S.; Rinaldi, D.; Pochard, I. Effect of the repartition of the PEG side chains on the adsorption and dispersion behaviors of PCP in presence of sulfate. Cem. Concr. Res. 2012, 42, 431–439. [Google Scholar] [CrossRef]
Materials | Cement | Montmorillonite |
---|---|---|
Loss of ignition (wt%) | 8.55 | 20.62 |
SiO2 (wt%) | 26.28 | 53.77 |
AI2O3 (wt%) | 8.77 | 15.07 |
Fe2O3 (wt%) | 3.83 | 4.07 |
CaO (wt%) | 44.92 | 4.04 |
MgO (wt%) | 2.18 | 6.17 |
SO3 (wt%) | 2.12 | 126 |
Density (g/cm3) | 2.05 | 2.78 |
Specific surface area (m2/g) | 932 | 377 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhao, W.; Wang, S.; Wang, C.; Du, Q.; Yan, Y.; Yang, X.; Lv, S.; Hu, H.; Jin, Y.; et al. Maltitol-Derived Sacrificial Agent for Enhancing the Compatibility between PCE and Cement Paste. Materials 2023, 16, 7515. https://doi.org/10.3390/ma16247515
Wang H, Zhao W, Wang S, Wang C, Du Q, Yan Y, Yang X, Lv S, Hu H, Jin Y, et al. Maltitol-Derived Sacrificial Agent for Enhancing the Compatibility between PCE and Cement Paste. Materials. 2023; 16(24):7515. https://doi.org/10.3390/ma16247515
Chicago/Turabian StyleWang, Huan, Weixun Zhao, Siqi Wang, Chao Wang, Qifei Du, Yan Yan, Xianke Yang, Sa Lv, Hongliang Hu, Yujie Jin, and et al. 2023. "Maltitol-Derived Sacrificial Agent for Enhancing the Compatibility between PCE and Cement Paste" Materials 16, no. 24: 7515. https://doi.org/10.3390/ma16247515
APA StyleWang, H., Zhao, W., Wang, S., Wang, C., Du, Q., Yan, Y., Yang, X., Lv, S., Hu, H., Jin, Y., Kong, L., Wang, P., Chi, Y., & Yang, X. (2023). Maltitol-Derived Sacrificial Agent for Enhancing the Compatibility between PCE and Cement Paste. Materials, 16(24), 7515. https://doi.org/10.3390/ma16247515