Solution Combustion Synthesis of Ni-Based Nanocatalyst Using Ethylenediaminetetraacetic Acid and Nickel-Carbon Nanotube Growth Behavior
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Thermal Analysis
3.2. Synthesis of NiO Nanocatalyst
3.3. Carbon Nanotube Growth via CCVD Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maynard, A. Navigating the fourth industrial revolution. Nature Nanotech. 2015, 10, 1005–1006. [Google Scholar] [CrossRef] [PubMed]
- Daemmrich, A. Invention, innovation systems, and the fourth industrial revolution. Technol. Innov. 2017, 18, 257–265. [Google Scholar] [CrossRef]
- Belmonte, M. Advanced ceramic materials for high temperature applications. Adv. Eng. Mater. 2006, 8, 693–703. [Google Scholar] [CrossRef]
- Tang, C.; Titirici, M.; Zhang, Q. A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. J. Energy Chem. 2017, 26, 1077–11093. [Google Scholar] [CrossRef]
- Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef]
- Tyagi, A.; Walia, R.S.; Murtaza, Q.; Pandey, S.M.; Tayagi, P.K.; Bajaj, B. A critical review of diamond like carbon coating for wear resistance applications. Int. J. Refract. Hard Met. 2019, 78, 107–122. [Google Scholar] [CrossRef]
- Zhang, Y.; Heo, Y.J.; Son, Y.R.; In, I.; An, K.H.; Kim, B.J.; Park, S.J. Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon 2019, 142, 445–460. [Google Scholar] [CrossRef]
- Bakshi, S.R.; Lahiri, D.; Agarwal, A. Carbon nanotube reinforced metal matrix composites a review. Int. Mater. Rev. 2010, 55, 41–64. [Google Scholar] [CrossRef]
- Yusupov, K.; Zakhidov, A.; You, S.; Stumpf, S.; Martinez, P.M.; Ishteev, A.; Vomiero, A.; Khovaylo, V.; Schubert, U. Influence of oriented CNT forest on thermoelectric properties of polymer-based materials. J. Alloys Compd. 2018, 741, 392–397. [Google Scholar] [CrossRef]
- Kinloch, I.A.; Suhr, J.; Lou, J.; Young, R.J.; Ajayan, P.M. Composites with carbon nanotubes and graphene: An outlook. Science 2018, 362, 547–553. [Google Scholar] [CrossRef]
- Zhu, T.; Li, Y.; Sang, S.; Jin, S.; Li, Y.; Zhao, L.; Liang, X. Effect of nanocarbon sources on microstructure and mechanical properties of MgO–C refractories. Ceram. Int. 2014, 40, 4333–4340. [Google Scholar] [CrossRef]
- Shah, K.A.; Tali, B.A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 2016, 41, 67–82. [Google Scholar] [CrossRef]
- Sano, N.; Yamanoto, S.; Tamon, H. Cr as a key factor for direct synthesis of multi-walled carbon nanotubes on industrial alloys. Chem. Eng. J. 2014, 242, 278–284. [Google Scholar] [CrossRef]
- Baddour, C.E.; Fadlallah, F.; Nashuoglu, D.; Mitra, R.; Vandsburger, L.; Meunier, J.L. A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst. Carbon 2008, 47, 313–347. [Google Scholar] [CrossRef]
- Deng, W.Q.; Xu, X.; Goddard, W.A. A Two-Stage Mechanism of Bimetallic Catalyzed Growth of Single-Walled Carbon Nanotubes. Nano Lett. 2004, 4, 2331–2335. [Google Scholar] [CrossRef]
- Parnianfar, H.; Masoudpanah, S.M.; Alamolhoda, S.; Fathi, H. Mixture of fuels for solution combustion synthesis of porous Fe3O4 powders. J. Magn. Magn. Mater. 2017, 432, 24–29. [Google Scholar] [CrossRef]
- Portillo-Vélez, N.S.; Zanella, R. Comparative study of transition metal (Mn, Fe or Co) catalysts supported on titania: Effect of Au nanoparticles addition towards CO oxidation and soot combustion reactions. Chem. Eng. J. 2020, 385, 123848. [Google Scholar] [CrossRef]
- Morsi, K. The diversity of combustion synthesis processing: A review. J. Mater. Sci. 2012, 47, 68–92. [Google Scholar] [CrossRef]
- González-Cortés, S.L.; Imbert, F.E. Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Catal. A-Gen. 2013, 452, 117–131. [Google Scholar] [CrossRef]
- Verma, A.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution combustion synthesis of nanoscale materials. Chem. Rev. 2016, 116, 14493–14586. [Google Scholar] [CrossRef]
- Bhaduri, S.; Bhaduri, S.B. Phase and microstructural evolution of heat treated nanocrystalline powders in Al2O3-MgO binary system. Nanostruct. Mater. 1999, 11, 469–476. [Google Scholar] [CrossRef]
- Jung, C.H.; Jalota, S.; Bhaduri, S.B. Quantitative effects of fuel on the synthesis of Ni/NiO particles using a microwave-induced solution combustion synthesis in air atmosphere. Mater. Lett. 2005, 59, 2426–2432. [Google Scholar] [CrossRef]
- Purohit, R.D.; Saha, S.; Tyagi, A.K. Nanocrystalline thoria powders via glycine-nitrate combustion. J. Nucl. Mater. 2001, 288, 7–10. [Google Scholar] [CrossRef]
- Groven, L.J.; Pfeil, T.L.; Pourpoint, T.L. Solution combustion synthesized cobalt oxide catalyst precursor for NaBH4 hydrolysis. Int. J. Hydrog. Energy 2013, 38, 6377–6380. [Google Scholar] [CrossRef]
- Kosaka, M.; Takano, S.; Hasegawa, K.; Noda, S. Direct synthesis of few- and multi-layer graphene films on dielectric substrates by “etching-precipitation” method. Carbon 2015, 82, 254–263. [Google Scholar] [CrossRef]
- Hoyos-Palacio, L.M.; Garcia, A.G.; Perez-Robles, J.F.; Gonzalez, J.; Martinez-Tejada, H.V. Catalytic effect of Fe, Ni, Co and Mo on the CNTs production. IOP Conf. Ser. Mater. Sci. Eng. 2014, 59, 012005. [Google Scholar] [CrossRef]
- Rümmeli, M.H.; Kramberger, C.; Schäffel, F.; Borowiak-Palen, E.; Gemming, T.; Rellinghaus, B.; Jost, O.; Löffler, M.; Ayala, P.; Pichler, T.; et al. Catalyst size dependencies for carbon nanotube synthesis. Phys. Stat. Sol. 2007, 244, 3911–3915. [Google Scholar] [CrossRef]
- Castro, C.; Fernández-Pacheco, R.; Pinault, M.; Stephan, O.; Reynaud, C.; Mayne-L’Hermite, M. Analysis of the Continuous Feeding of Catalyst Particles during the Growth of Vertically Aligned Carbon Nanotubes by Aerosol-Assisted CCVD. Nanomaterials 2022, 12, 449. [Google Scholar] [CrossRef]
- Wang, J.; Shen, B.; Lan, S.; Kang, D.; Wu, C. Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics: The influence of catalyst and reaction pressure. Catal. Today 2020, 351, 50–57. [Google Scholar] [CrossRef]
- Cunha, T.D.; Maulu, A.; Guillot, J.; Fleming, Y.; Duez, B.; Lenoble, D.; Arl, D. Design of silica nanoparticles-supported metal catalyst by wet impregnation with catalytic performance for tuning carbon nanotubes growth. Catalyst 2021, 11, 986. [Google Scholar] [CrossRef]
- Aliottaa, C.; Liottab, L.F.; La Parolab, V.; Martoranaa, A.; Muccilloc, E.N.S.; Muccilloc, R.; Deganello, F. Ceria-based electrolytes prepared by solution combustion synthesis:The role of fuel on the materials properties. Appl. Catal. B Environ. 2016, 197, 14–22. [Google Scholar] [CrossRef]
- Hadke, S.; Kalimila, M.T.; Rathkanthiwar, S.; Gour, S.; Sonkusare, R.; Ballal, A. Role of fuel and fuel-to-oxidizer ratio in combustion synthesis of nano-crystalline nickel oxide powders. Ceram. Int. 2015, 41, 14949–14957. [Google Scholar] [CrossRef]
- Jain, S.R.; Adiga, K.C.; Pai Verneker, V.R. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame. 1981, 40, 71–79. [Google Scholar] [CrossRef]
- Chen, J.; Gao, J.; Wang, X. Thermal decomposition of ethylenediaminetetraacetic acid in the presence of 1,2-phenylenediamine and hydrochloric acid. J. Braz. Chem. Soc. 2006, 17, 880–885. [Google Scholar] [CrossRef]
- Dupuis, A.C. The catalyst in the CCVD of carbon nanotubes—A review. Prog. Mater. Sci. 2005, 50, 929–961. [Google Scholar] [CrossRef]
- Wei, J.; Ci, L.; Jiang, B.; Li, Y.; Zhang, X.; Zhu, H.; Xu, C.; Wu, D. Preparation of highly pure double-walled carbon nanotubes. J. Mater. Chem. 2003, 13, 1340–1344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, H.; Lee, J.; Yoo, H.; Jo, I.; Lee, H. Solution Combustion Synthesis of Ni-Based Nanocatalyst Using Ethylenediaminetetraacetic Acid and Nickel-Carbon Nanotube Growth Behavior. Materials 2023, 16, 7191. https://doi.org/10.3390/ma16227191
Kim J, Lee H, Lee J, Yoo H, Jo I, Lee H. Solution Combustion Synthesis of Ni-Based Nanocatalyst Using Ethylenediaminetetraacetic Acid and Nickel-Carbon Nanotube Growth Behavior. Materials. 2023; 16(22):7191. https://doi.org/10.3390/ma16227191
Chicago/Turabian StyleKim, Juyoung, Hwanseok Lee, Jaekwang Lee, Hyunjo Yoo, Ilguk Jo, and Heesoo Lee. 2023. "Solution Combustion Synthesis of Ni-Based Nanocatalyst Using Ethylenediaminetetraacetic Acid and Nickel-Carbon Nanotube Growth Behavior" Materials 16, no. 22: 7191. https://doi.org/10.3390/ma16227191
APA StyleKim, J., Lee, H., Lee, J., Yoo, H., Jo, I., & Lee, H. (2023). Solution Combustion Synthesis of Ni-Based Nanocatalyst Using Ethylenediaminetetraacetic Acid and Nickel-Carbon Nanotube Growth Behavior. Materials, 16(22), 7191. https://doi.org/10.3390/ma16227191