Subthreshold Laser Ablation Measurements by Langmuir Probe Method for ns Irradiation of HfO2 and ZrO2
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khoshman, J.M.; Kordesch, M.E. Optical Properties of A-HfO2 Thin Films. Surf. Coat. Technol. 2006, 201, 3530–3535. [Google Scholar] [CrossRef]
- Abromavičius, G.; Kičas, S.; Buzelis, R. High Temperature Annealing Effects on Spectral, Microstructural and Laser Damage Resistance Properties of Sputtered HfO2 and HfO2-SiO2 Mixture-Based UV Mirrors. Opt. Mater. 2019, 95, 109245. [Google Scholar] [CrossRef]
- Khan, S.B.; Zhang, Z.; Lee, S.L. Annealing Influence on Optical Performance of HfO2 Thin Films. J. Alloys Compd. 2020, 816, 152552. [Google Scholar] [CrossRef]
- Rubahn, K.; Ihlemann, J. UV-Laser Ablation of HFO2 Dielectric Layers on SiO2 for Mask Preparation. MRS Proc. 1998, 526, 137. [Google Scholar] [CrossRef]
- Zhang, D.; Fan, S.; Zhao, Y.; Gao, W.; Shao, J.; Fan, R.; Wang, Y.; Fan, Z. High Laser-Induced Damage Threshold HfO2 Films Prepared by Ion-Assisted Electron Beam Evaporation. Appl. Surf. Sci. 2005, 243, 232–237. [Google Scholar] [CrossRef]
- Mangote, B.; Gallais, L.; Zerrad, M.; Lemarchand, F.; Gao, L.H.; Commandré, M.; Lequime, M. A High Accuracy Femto-/Picosecond Laser Damage Test Facility Dedicated to the Study of Optical Thin Films. Rev. Sci. Instrum. 2012, 83, 013109. [Google Scholar] [CrossRef]
- Sahraee, M.; Reza Fallah, H.; Zabolian, H.; Moradi, B.; Haji Mahmoodzade, M. Influence of Laser Conditioning on Laser Induced Damage Threshold of Single Layers of ZrO2 with Various Deposition Conditions. Opt. Spectrosc. 2015, 118, 627–630. [Google Scholar] [CrossRef]
- Tian, G.; Huang, J.; Wang, T.; He, H.; Shao, J. Microstructure and Laser-Induced Damage Threshold of ZrO2 Coatings Dependence on Annealing Temperature. Appl. Surf. Sci. 2005, 239, 201–208. [Google Scholar] [CrossRef]
- Smalakys, L.; Drobužaitė, E.; Momgaudis, B.; Grigutis, R.; Melninkaitis, A. Quantitative Investigation of Laser-Induced Damage Fatigue in HfO2 and ZrO2 Single Layer Coatings. Opt. Express 2020, 28, 25335. [Google Scholar] [CrossRef]
- Toftmann, B.; Doggett, B.; Budtz-Jørgensen, C.; Schou, J.; Lunney, J.G. Femtosecond Ultraviolet Laser Ablation of Silver and Comparison with Nanosecond Ablation. J. Appl. Phys. 2013, 113, 083304. [Google Scholar] [CrossRef]
- Oosterbeek, R.N.; Ashforth, S.; Bodley, O.; Simpson, M.C. Measuring the Ablation Threshold Fluence in Femtosecond Laser Micromachining with Vortex and Bessel Pulses. Opt. Express 2018, 26, 34558. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Tani, S.; Kuroda, R.; Kobayashi, Y. Precision Measurement of Ablation Thresholds with Variable Pulse Duration Laser. Appl. Phys. A 2020, 126, 582. [Google Scholar] [CrossRef]
- Schwarz, B.; Ritt, G.; Eberle, B. Impact of Threshold Assessment Methods in Laser-Induced Damage Measurements Using the Examples of CCD, CMOS, and DMD. Appl. Opt. 2021, 60, F39. [Google Scholar] [CrossRef]
- Solomon, J.M.; Ahmad, S.I.; Dave, A.; Lu, L.-S.; HadavandMirzaee, F.; Lin, S.-C.; Chen, S.-H.; Luo, C.-W.; Chang, W.-H.; Her, T.-H. Ultrafast Laser Ablation, Intrinsic Threshold, and Nanopatterning of Monolayer Molybdenum Disulfide. Sci. Rep. 2022, 12, 6910. [Google Scholar] [CrossRef]
- Cabalín, L.M.; Laserna, J.J. Experimental Determination of Laser Induced Breakdown Thresholds of Metals under Nanosecond Q-Switched Laser Operation. Spectrochim. Acta Part B Spectrosc. 1998, 53, 723–730. [Google Scholar] [CrossRef]
- Liang, J.; Liu, W.; Li, Y.; Luo, Z.; Pang, D. A Model to Predict the Ablation Width and Calculate the Ablation Threshold of Femtosecond Laser. Appl. Surf. Sci. 2018, 456, 482–486. [Google Scholar] [CrossRef]
- Doggett, B.; Lunney, J.G. Langmuir Probe Characterization of Laser Ablation Plasmas. J. Appl. Phys. 2009, 105, 033306. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Chertopalov, S.; Lancok, J.; Craciun, V. Langmuir Probe Technique for Plasma Characterization during Pulsed Laser Deposition Process. Coatings 2021, 11, 762. [Google Scholar] [CrossRef]
- Anoop, K.K.; Polek, M.P.; Bruzzese, R.; Amoruso, S.; Harilal, S.S. Multidiagnostic Analysis of Ion Dynamics in Ultrafast Laser Ablation of Metals over a Large Fluence Range. J. Appl. Phys. 2015, 117, 083108. [Google Scholar] [CrossRef]
- Chen, J.; Lunney, J.G.; Lippert, T.; Ojeda-G-P, A.; Stender, D.; Schneider, C.W.; Wokaun, A. Langmuir Probe Measurements and Mass Spectrometry of Plasma Plumes Generated by Laser Ablation of La0.4Ca0.6MnO3. J. Appl. Phys. 2014, 116, 073303. [Google Scholar] [CrossRef]
- Geohegan, D.B.; Puretzky, A.A. Laser Ablation Plume Thermalization Dynamics in Background Gases: Combined Imaging, Optical Absorption and Emission Spectroscopy, and Ion Probe Measurements. Appl. Surf. Sci. 1996, 96–98, 131–138. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Hodoroaba, B.C.; Bulai, G.; Gurlui, S.; Craciun, V. Multiple Structure Formation and Molecule Dynamics in Transient Plasmas Generated by Laser Ablation of Graphite. Spectrochim. Acta Part B Spectrosc. 2020, 165, 105774. [Google Scholar] [CrossRef]
- Anoop, K.K.; Harilal, S.S.; Philip, R.; Bruzzese, R.; Amoruso, S. Laser Fluence Dependence on Emission Dynamics of Ultrafast Laser Induced Copper Plasma. J. Appl. Phys. 2016, 120, 185901. [Google Scholar] [CrossRef]
- Desarkar, H.S.; Kumbhakar, P.; Mitra, A.K. Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique. Appl Nanosci 2012, 2, 285–291. [Google Scholar] [CrossRef]
- Oujja, M.; Martín-García, L.; Rebollar, E.; Quesada, A.; García, M.A.; Fernández, J.F.; Marco, J.F.; de la Figuera, J.; Castillejo, M. Effect of Wavelength, Deposition Temperature and Substrate Type on Cobalt Ferrite Thin Films Grown by Pulsed Laser Deposition. Appl. Surf. Sci. 2018, 452, 19–31. [Google Scholar] [CrossRef]
- Burdt, R.A.; Tao, Y.; Tillack, M.S.; Yuspeh, S.; Shaikh, N.M.; Flaxer, E.; Najmabadi, F. Laser Wavelength Effects on the Charge State Resolved Ion Energy Distributions from Laser-Produced Sn Plasma. J. Appl. Phys. 2010, 107, 043303. [Google Scholar] [CrossRef]
- Bulgakova, N.M.; Bulgakov, A.v. Gas-Dynamic Effects of the Interaction between a Pulsed Laser-Ablation Plume and the Ambient Gas: Analogy with an Underexpanded Jet. J. Phys. D Appl. Phys. 1998, 31, 693–703. [Google Scholar] [CrossRef]
- Marine, W.; Bulgakova, N.M.N.M.; Patrone, L.; Ozerov, I. Electronic Mechanism of Ion Expulsion under UV Nanosecond Laser Excitation of Silicon: Experiment and Modeling. Appl. Phys. A 2004, 79, 771–774. [Google Scholar] [CrossRef][Green Version]
- Irimiciuc, S.A.; Chertopalov, S.; Novotný, M.; Craciun, V.; Lancok, J. Understanding Pulsed Laser Deposition Process of Copper Halides via Plasma Diagnostics Techniques. J. Appl. Phys. 2021, 130, 243302. [Google Scholar] [CrossRef]
- Volfová, L.; Andrei Irimiciuc, S.; Chertopalov, S.; Hruška, P.; Čížek, J.; Vondráček, M.; Novotný, M.; Butterling, M.; Liedke, M.O.; Wagner, A.; et al. Tailoring Pulsed Laser Deposition Fabricated Copper Oxide Film by Controlling Plasma Parameters. Appl. Surf. Sci. 2023, 608, 155128. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Chertopalov, S.; Buryi, M.; Remeš, Z.; Vondráček, M.; Fekete, L.; Novotný, M.; Lancok, J. Investigations on the CuI Thin Films Production by Pulsed Laser Deposition. Appl. Surf. Sci. 2022, 606, 154868. [Google Scholar] [CrossRef]
- Lednev, N.V.; Pershin, M.S.; Obraztsova, D.E.; Kudryashov, I.S.; Bunkin, F.A.; Lednev, V.N.; Pershin, S.M.; Obraztsova, E.D.; Kudryashov, S.I.; Bunkin, A.F. Single-Shot and Single-Spot Measurement of Laser Ablation Threshold for Carbon Nanotubes. J. Phys. D Appl. Phys. 2013, 46, 052002. [Google Scholar] [CrossRef]
- Banerjee, S.P.; Fedosejevs, R. Single-Shot Ablation Threshold of Chromium Using UV Femtosecond Laser Pulses. Appl. Phys. A 2014, 117, 1473–1478. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Chertopalov, S.; Bulíř, J.; Vondracek, M.; Fekete, L.; Jiricek, P.; Novotný, M.; Craciun, V.; Lancok, J. Insight into the Plasma Oxidation Process during Pulsed Laser Deposition. Plasma Process. Polym. 2022, 19, 2100102. [Google Scholar] [CrossRef]
- Irimiciuc, S.A.; Gurlui, S.; Bulai, G.; Nica, P.; Agop, M.; Focsa, C. Langmuir Probe Investigation of Transient Plasmas Generated by Femtosecond Laser Ablation of Several Metals: Influence of the Target Physical Properties on the Plume Dynamics. Appl. Surf. Sci. 2017, 417, 108–118. [Google Scholar] [CrossRef]
- Torrisi, L.; Gammino, S. Method for the Calculation of Electrical Field in Laser-Generated Plasma for Ion Stream Production. Rev. Sci. Instrum. 2006, 77, 03B707. [Google Scholar] [CrossRef]
- Picciotto, A.; Krása, J.; Láska, L.; Rohlena, K.; Torrisi, L.; Gammino, S.; Mezzasalma, A.M.; Caridi, F. Plasma Temperature and Ion Current Analysis of Gold Ablation at Different Laser Power Rates. Nucl. Instrum. Methods Phys. Res. B 2006, 247, 261–267. [Google Scholar] [CrossRef]
- Margarone, D.; Torrisi, L.; Borrielli, A.; Caridi, F. Silver Plasma by Pulsed Laser Ablation. Plasma Sources Sci. Technol. 2008, 17, 035019. [Google Scholar] [CrossRef]
- Láska, L.; Krása, J.; Pfeifer, M.; Rohlena, K.; Gammino, S.; Torrisi, L.; Andò, L.; Ciavola, G. Generation of Intense Streams of Metallic Ions with a Charge State up to 10+ in a Laser Ion Source. Rev. Sci. Instrum. 2004, 75, 1575–1578. [Google Scholar] [CrossRef]
- Samsonov, G.V. The Oxide Handbook; Springer: New York, NY, USA, 1973. [Google Scholar]
- Ratzke, M.; Wolfframm, D.; Kappa, M.; Kouteva-Arguirova, S.; Reif, J. Pulsed laser deposition of HfO2 and PrxOy high-k films on Si(100). Appl. Surf. Sci. 2005, 247, 128–133. [Google Scholar] [CrossRef]
- Al-Kuhaili, M.; Durrani, S. Effect of annealing on pulsed laser deposited zirconium oxide thin films. J. Alloys Compd. 2011, 509, 9536–9541. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udrea, R.; Irimiciuc, S.A.; Craciun, V. Subthreshold Laser Ablation Measurements by Langmuir Probe Method for ns Irradiation of HfO2 and ZrO2. Materials 2023, 16, 536. https://doi.org/10.3390/ma16020536
Udrea R, Irimiciuc SA, Craciun V. Subthreshold Laser Ablation Measurements by Langmuir Probe Method for ns Irradiation of HfO2 and ZrO2. Materials. 2023; 16(2):536. https://doi.org/10.3390/ma16020536
Chicago/Turabian StyleUdrea, Radu, Stefan Andrei Irimiciuc, and Valentin Craciun. 2023. "Subthreshold Laser Ablation Measurements by Langmuir Probe Method for ns Irradiation of HfO2 and ZrO2" Materials 16, no. 2: 536. https://doi.org/10.3390/ma16020536
APA StyleUdrea, R., Irimiciuc, S. A., & Craciun, V. (2023). Subthreshold Laser Ablation Measurements by Langmuir Probe Method for ns Irradiation of HfO2 and ZrO2. Materials, 16(2), 536. https://doi.org/10.3390/ma16020536