Compressive Behaviors of Thin-Walled Steel Tube Stub Columns Filled with Self-Compacting Concrete Containing Recycled Aggregate
Abstract
:1. Introduction
2. Experiments
2.1. Specimen Fabrication
Number | D × t × L | L/D | D/t | Properties of Concrete | Properties of Steel Tubes | |||
---|---|---|---|---|---|---|---|---|
(mm3) | fck (MPa) | Ec (GPa) | Fy (MPa) | Es (GPa) | μs | |||
N-T1-1 | 140 × 1.2 × 420 | 3.00 | 116.7 | 65.8 | 30.1 | 345.0 | 181.0 | 0.30 |
R-T1-1 | 140 × 1.2 × 420 | 3.00 | 116.7 | 54.4 | 25.7 | 345.0 | 181.0 | 0.30 |
R-T1-2 | 140 × 1.2 × 420 | 3.00 | 116.7 | 54.4 | 25.7 | 345.0 | 181.0 | 0.30 |
N-T2-1 | 140 × 3.0 × 420 | 3.00 | 46.7 | 65.8 | 30.1 | 358.3 | 202.0 | 0.28 |
R-T2-1 | 140 × 3.0 × 420 | 3.00 | 46.7 | 54.4 | 25.7 | 358.3 | 202.0 | 0.28 |
R-T2-2 | 140 × 3.0 × 420 | 3.00 | 46.7 | 54.4 | 25.7 | 358.3 | 202.0 | 0.28 |
References | D (mm) | t (mm) | L (mm) | L/D | Concrete Strength (MPa) |
---|---|---|---|---|---|
[58] | 159.0 | 3.14~4.68 | 477.0~1908.0 | 3.0~12.0 | 52.88~72.51 |
[76] | 114.3 | 2.74~5.90 | 300.0~900.0 | 2.62~7.87 | 56.0~107.0 |
[77] | 114.3~219.1 | 3.6~10.0 | 250.0~600.0 | 2.19~2.74 | 148.8~193.3 |
[50] | 140.0 | 3.63 | 500.0~1500.0 | 3.57~10.71 | 27.8~49.5 |
[64] | 100~200 | 3.0 | 300.0~600.0 | 3.0 | 48.2 |
[78] | 165.0 | 2.72 | 510.0 | 3.1 | 46.9~64.1 |
[69] | 133.0~140.0 | 2.64~4.66 | 400.0~420.0 | 3.0 | 36.9~52.9 |
[65] | 138~170.6 | 2.79~2.86 | 420.0~510.0 | 3.0 | 36.3~40.0 |
[66] | 114.0~219.0 | 2.19~2.86 | 340.0~657.0 | 3.0 | 29.7~33.1 |
[79] | 120.0 | 3.0 | 360.0 | 3.0 | 42.1~43.3 |
Numbers | Water | Cement | Sand | NCA * | RCA * | Fly Ash | Superplasticizer |
---|---|---|---|---|---|---|---|
(wt.%) | |||||||
N | 198.96 | 401.47 | 836.46 | 768.5 | - | 122.1 | 0.4 |
R | 192.8 | 389.0 | 845.9 | - | 770.0 | 118.3 | 0.4 |
References | Water | Cement | NFA * | RFA * | NCA * | RCA * | Fly Ash |
---|---|---|---|---|---|---|---|
[80] | 205 | 342 | 860.5 | - | 0.0 | 860.5 | - |
259.9 | 606.3 | ||||||
435 | 435 | ||||||
611.7 | 262.1 | ||||||
914 | 914 | 0.0 | |||||
[81] | 185 | 463 | 850 | 0 | 786 | - | 132 |
765 | 74 | ||||||
680 | 159 | ||||||
595 | 238 | ||||||
[51] | 180 | 340 | 695 | 0 | - | 895 | 200 |
521 | 153 | ||||||
348 | 305 | ||||||
174 | 458 | ||||||
0 | 610 | ||||||
[52] | 176 | 440 | 595.37 | 172.95 | 832.6 | - | 110 |
396.91 | 345.9 | 832.6 | |||||
198.46 | 518.85 | 832.6 | |||||
- | 691.79 | 832.6 | |||||
[19] | 167 | 400 | 900 | 300 | 530 | - | - |
600 | 600 | ||||||
300 | 900 | ||||||
- | 1200 | ||||||
[82] | 277 | 430 | 846 | 0 | 301 | 278 | 185 |
635 | 193 | 301 | 278 | ||||
423 | 386 | 301 | 278 | ||||
846 | - | - | 556 | ||||
[83] | 190 | 475 | 900 | - | 600 | 120 | 75 |
[26] | 194 | 315 | 738 | - | 596 | 149 | 135 |
447 | 298 | ||||||
298 | 447 | ||||||
[84] | 277 | 430 | 820 | - | 326 | 326 | 185 |
- | - | 652 | |||||
[85] | 171 | 427.5 | 765 | - | 749.2 | - | - |
- | 667 | 859.8 | - | ||||
- | 667 | - | 749.2 |
Properties | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | SO3 |
---|---|---|---|---|---|---|---|
Content (wt.%) | 21.6 | 5.3 | 3.0 | 61.2 | 2.2 | 0.9 | 2.2 |
Physical Properties | Specific Gravity | Porosity (%) | Crushing Index (%) | Fineness Modulus |
---|---|---|---|---|
River sand | 2.7 | 41.8 | - | 2.46 |
Natural coarse aggregate | 2.7 | 47.0 | 7.8 | 5.61 |
Recycled coarse aggregate | 2.6 | 48.0 | 18.1 | 5.58 |
2.2. Material Properties
2.3. Setup and Procedure
3. Results and Discussion
3.1. Failure Modes
3.2. Relationship between Load and Displacement
3.3. Relationship between Load and Strain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padmini, A.K.; Ramamurthy, K.; Mathews, M.S. Influence of parent concrete on the properties of recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 829–836. [Google Scholar] [CrossRef]
- Singh, A.; Arora, S.; Sharma, V.; Bhardwaj, B. Workability retention and strength development of self-compacting recycled aggregate concrete using ultrafine recycled powders and silica fume. J. Hazard. Toxic Radioact. Waste 2019, 23, 4019016. [Google Scholar] [CrossRef]
- Jagadesh, P.; Juan-Valdés, A.; Guerra-Romero, M.I.; Pozo, J.M.M.-D.; García-González, J.; Martínez-García, R. Effect of design parameters on compressive and split tensile strength of self-compacting concrete with recycled aggregate: An overview. Appl. Sci. 2021, 11, 6028. [Google Scholar] [CrossRef]
- Revilla-Cuesta, V.; Ortega-López, V.; Skaf, M.; Manso, J.M. Effect of fine recycled concrete aggregate on the mechanical behavior of self-compacting concrete. Constr. Build. Mater. 2020, 263, 120671. [Google Scholar] [CrossRef]
- Kapoor, K.; Singh, S.; Singh, B.; Singh, P. Effect of recycled aggregates on fresh and hardened properties of self compacting concrete. Mater. Today Proc. 2020, 32, 600–607. [Google Scholar] [CrossRef]
- Duan, Z.; Singh, A.; Xiao, J.; Hou, S. Combined use of recycled powder and recycled coarse aggregate derived from construction and demolition waste in self-compacting concrete. Constr. Build. Mater. 2020, 254, 119323. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Arafa, M.; Alqedra, M.; Shihada, S.; Hanoona, H. Investigating the effect of sulfate attack on compressive strength of recycled aggregate concrete. Int. J. Sustain. Constr. Eng. Technol. 2017, 8, 66–77. [Google Scholar]
- Shi, C.; Li, Y.; Zhang, J.; Li, W.; Chong, L.; Xie, Z. Performance enhancement of recycled concrete aggregate—A review. J. Clean. Prod. 2016, 112, 466–472. [Google Scholar] [CrossRef]
- Behera, M.; Bhattacharyya, S.; Minocha, A.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete–A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516. [Google Scholar]
- Santamaria, A.; Faleschini, F.; Giacomello, G.; Brunelli, K.; José, J.-T.S.; Pellegrino, C.; Pasetto, M. Dimensional stability of electric arc furnace slag in civil engineering applications. J. Clean. Prod. 2018, 205, 599–609. [Google Scholar] [CrossRef]
- Tam, V.W.; Wang, K.; Tam, C.M. Assessing relationships among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis. J. Hazard. Mater. 2008, 152, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.M.; Maia, L.; Nunes, S.; Milheiro-Oliveira, P. Design of self-compacting high-performance concrete: Study of mortar phase. Constr. Build. Mater. 2018, 167, 617–630. [Google Scholar] [CrossRef]
- Nagataki, S.; Gokce, A.; Saeki, T.; Hisada, M. Assessment of recycling process induced damage sensitivity of recycled concrete aggregates. Cem. Concr. Res. 2004, 34, 965–971. [Google Scholar] [CrossRef]
- Yacoub, A.; Djerbi, A.; Fen-Chong, T. Water absorption in recycled sand: New experimental methods to estimate the water saturation degree and kinetic filling during mortar mixing. Constr. Build. Mater. 2018, 158, 464–471. [Google Scholar] [CrossRef]
- Nair, M.S.; Jayaraj, K.G. Self-compacting concrete using recycled coarse aggregate—A feasible solution for waste demolished concrete. Int. J. Adv. Res. 2020, 8, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, M.; Akhtar, S.; Rajput, S. Development of the self compacting concrete by industrial waste (red mud). Int. J. Eng. Res. Appl. 2013, 3, 539–542. [Google Scholar]
- Okamura, H.; Ozawa, K. Self-compactable high-performance concrete in Japan. Spec. Publ. 1996, 159, 31–44. [Google Scholar]
- Song, Q.; Yu, R.; Wang, X.; Rao, S.; Shui, Z. A novel self-compacting ultra-high performance fibre reinforced concrete (SCUHPFRC) derived from compounded high-active powders. Constr. Build. Mater. 2018, 158, 883–893. [Google Scholar] [CrossRef]
- Bahrami, N.; Zohrabi, M.; Mahmoudy, S.A.; Akbari, M. Optimum recycled concrete aggregate and micro-silica content in self-compacting concrete: Rheological, mechanical and microstructural properties. J. Build. Eng. 2020, 31, 101361. [Google Scholar] [CrossRef]
- Topcu, I.B.; Şengel, S. Properties of concretes produced with waste concrete aggregate. Cem. Concr. Res. 2004, 34, 1307–1312. [Google Scholar] [CrossRef]
- Türkmen, I. Influence of different curing conditions on the physical and mechanical properties of concretes with admixtures of silica fume and blast furnace slag. Mater. Lett. 2003, 57, 4560–4569. [Google Scholar] [CrossRef]
- Santos, S.A.; Da Silva, P.R.; De Brito, J. Mechanical performance evaluation of self-compacting concrete with fine and coarse recycled aggregates from the precast industry. Materials 2017, 10, 904. [Google Scholar] [CrossRef] [PubMed]
- Carro-López, D.; González-Fonteboa, B.; Martínez-Abella, F.; González-Taboada, I.; de Brito, J.; Varela-Puga, F. Proportioning, fresh-state properties and rheology of self-compacting concrete with fine recycled aggregates. Hormigón Acero 2018, 69, 213–221. [Google Scholar] [CrossRef]
- Alaejos, P.; de Juan, M.S.; Rueda, J.; Drummond, R.; Valero, I. Quality assurance of recycled aggregates. In Progress of Recycling in the Built Environment: Final Report of the RILEM Technical Committee 217-PRE 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 229–273. [Google Scholar]
- Carro-López, D.; González-Fonteboa, B.; Martínez-Abella, F.; González-Taboada, I.; de Brito, J.; Varela-Puga, F. Proportioning, microstructure and fresh properties of self-compacting concrete with recycled sand. Procedia Eng. 2017, 171, 645–657. [Google Scholar] [CrossRef]
- Tuyan, M.; Mardani-Aghabaglou, A.; Ramyar, K. Freeze–thaw resistance, mechanical and transport properties of self-consolidating concrete incorporating coarse recycled concrete aggregate. Mater. Des. 2014, 53, 983–991. [Google Scholar] [CrossRef]
- Katar, I.; Ibrahim, Y.; Malik, M.A.; Khahro, S.H. Mechanical properties of concrete with recycled concrete aggregate and fly ash. Recycling 2021, 6, 23. [Google Scholar] [CrossRef]
- Khan, R.M.; Amin, F.; Ahmad, M. Comparison of self compacting concrete using recycled aggregates & normal aggregates. Int. J. Adv. Res. Sci. Eng 2015, 4, 75. [Google Scholar]
- Panda, K.C.; Bal, P.K. Properties of self compacting concrete using recycled coarse aggregate. Procedia Eng. 2013, 51, 159–164. [Google Scholar] [CrossRef]
- Manzi, S.; Claudio Mazzotti Bignozzi, M.C. Self-compacting concrete with recycled concrete aggregate: Study of the long-term properties. Constr. Build. Mater. 2017, 157, 582–590. [Google Scholar] [CrossRef]
- Mohammed, S.I.; Najim, K.B. Mechanical Strength, Flexural Behavior and Fracture Energy of Recycled Concrete Aggregate Self-Compacting Concrete; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Han, L.; Li, W.; Bjorhovde, R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. J. Constr. Steel Res. 2014, 100, 211–228. [Google Scholar] [CrossRef]
- Bridge, R.Q.; O’Shea, M.D. Behaviour of thin-walled steel box sections with or without internal restraint. J. Constr. Steel Res. 1998, 47, 73–91. [Google Scholar] [CrossRef]
- Tao, Z.; Uy, B.; Han, L.-H.; Wang, Z.-B. Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression. Thin-Walled Struct. 2009, 47, 1544–1556. [Google Scholar] [CrossRef]
- Tao, Z.; Yu, Q. New Types of Composite Columns-Experiments, Theory and Methodology; Science Press: Beijing, China, 2006. [Google Scholar]
- Uy, B.; Patil, S.B. Concrete filled high strength steel box columns for tall buildings: Behaviour and design. Struct. Des. Tall Build. 1996, 5, 75–94. [Google Scholar] [CrossRef]
- Uy, B. Strength of concrete filled steel box columns incorporating local buckling. J. Struct. Eng. 2000, 126, 341–352. [Google Scholar] [CrossRef]
- Ge, H.; Usami, T. Strength of concrete-filled thin-walled steel box columns: Experiment. J. Struct. Eng. 1992, 118, 3036–3054. [Google Scholar] [CrossRef]
- Tao, Z.; Han, L.; Wang, Z. Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns. J. Constr. Steel Res. 2005, 61, 962–983. [Google Scholar] [CrossRef]
- Tao, Z.; Han, L.; Wang, D. Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns. Thin-Walled Struct. 2007, 45, 517–527. [Google Scholar] [CrossRef]
- Tao, Z.; Han, L.; Wang, D. Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete. Thin-Walled Struct. 2008, 46, 1113–1128. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, C.; Lu, X. Experimental study of hysteretic behaviour for concrete-filled square thin-walled steel tubular columns. J. Constr. Steel Res. 2007, 63, 317–325. [Google Scholar] [CrossRef]
- Mursi, M.; Uy, B. Strength of concrete filled steel box columns incorporating interaction buckling. J. Struct. Eng. 2003, 129, 626–639. [Google Scholar] [CrossRef]
- O’Shea, M.D.; Bridge, R.Q. Tests on circular thin-walled steel tubes filled with medium and high strength concrete. Aust. Civ. Eng. Trans. 1998, 40, 15. [Google Scholar]
- O’Shea, M.D.; Bridge, R.Q. Local buckling of thin-walled circular steel sections with or without internal restraint. J. Constr. Steel Res. 1997, 41, 137–157. [Google Scholar] [CrossRef]
- Chen, J.; Jin, W. Experimental investigation of thin-walled complex section concrete-filled steel stub columns. Thin-Walled Struct. 2010, 48, 718–724. [Google Scholar] [CrossRef]
- Le, K.B.; Van Cao, V.; Cao, H.X. Circular concrete filled thin-walled steel tubes under pure torsion: Experiments. Thin-Walled Struct. 2021, 164, 107874. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Jia, Y.; Li, L. Experimental Study on Self-Compacting Concrete-Filled Thin-Walled Steel Tube Columns. Buildings 2022, 12, 2134. [Google Scholar] [CrossRef]
- Wang, X.; Gao, P.; Liu, J.; Zhao, Q.; Xu, H.; Wei, W.; Wang, X.-T. Assessment on seismic performance of circular concrete-filled thin-walled steel tube columns. Adv. Struct. Eng. 2023, 26, 399–412. [Google Scholar] [CrossRef]
- Yu, F.; Qin, C.; Wang, S.; Jiang, J.; Fang, Y. Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected to eccentric compression. Front. Struct. Civ. Eng. 2020, 14, 760–772. [Google Scholar] [CrossRef]
- Kou, S.C.; Poon, C.S. Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates. Cem. Concr. Compos. 2009, 31, 622–627. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoglu, M.; Algın, Z.; Yazıcı, H. Rheological and fresh properties of self-compacting concretes containing coarse and fine recycled concrete aggregates. Constr. Build. Mater. 2016, 113, 622–630. [Google Scholar] [CrossRef]
- Fiol, F.; Revilla-Cuesta, V.; Thomas, C.; Manso, J.M. Self-compacting concrete containing coarse recycled precast-concrete aggregate and its durability in marine-environment-related tests. Constr. Build. Mater. 2023, 377, 131084. [Google Scholar] [CrossRef]
- Guler, S.; Copur, A.; Aydogan, M. A comparative study on square and circular high strength concrete-filled steel tube columns. Adv. Steel Constr. 2014, 10, 234–247. [Google Scholar]
- Zeghiche, J.; Chaoui, K. An experimental behaviour of concrete-filled steel tubular columns. J. Constr. Steel Res. 2005, 61, 53–66. [Google Scholar] [CrossRef]
- Xiong, M.; Xiong, D.; Liew, J.R. Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials. Eng. Struct. 2017, 136, 494–510. [Google Scholar] [CrossRef]
- Yang, Y.F.; Han, L.H. Behaviour of concrete filled steel tubular (CFST) stub columns under eccentric partial compression. Thin-Walled Struct. 2011, 49, 379–395. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, P.; Chi, Y.; Huang, L.; Ye, J.; Yu, M. Performance of the high-strength self-stressing and self-compacting concrete-filled steel tube columns subjected to the uniaxial compression. Int. J. Civ. Eng. 2018, 16, 1069–1083. [Google Scholar] [CrossRef]
- Wang, J.; Shen, Q.; Jiang, H.; Pan, X. Analysis and design of elliptical concrete-filled thin-walled steel stub columns under axial compression. Int. J. Steel Struct. 2018, 18, 365–380. [Google Scholar] [CrossRef]
- Li, J.-X.; Wang, J.-T.; Sun, Q.; Wu, Y.-R.; Zhou, S.-M.; Wang, F.-C. Axial compression behavior of circular concrete-filled high-strength thin-walled steel tubular columns with out-of-code D/t ratios. Adv. Mater. Sci. Eng. 2021, 2021, 9081566. [Google Scholar] [CrossRef]
- Lyu, X.; Xu, Y.; Xu, Q.; Yu, Y. Axial compression performance of square thin walled concrete-Filled steel tube stub columns with reinforcement stiffener under constant high-Temperature. Materials 2019, 12, 1098. [Google Scholar] [CrossRef]
- Liu, J.; Teng, Y.; Zhang, Y.; Wang, X.; Chen, Y.F. Axial stress-strain behavior of high-strength concrete confined by circular thin-walled steel tubes. Constr. Build. Mater. 2018, 177, 366–377. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, L.; Jiang, C.; Jia, Y.; Yang, G.; Li, M.; Tang, X.; Chen, D. Axial loading behaviour of self-compacting concrete-filled thin-walled steel tubular stub columns. Adv. Civ. Eng. 2021, 2021, 8861340. [Google Scholar] [CrossRef]
- Han, L.; Yao, G. Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Struct. 2004, 42, 1357–1377. [Google Scholar] [CrossRef]
- Tam, V.W.; Wang, Z.; Tao, Z. Behaviour of recycled aggregate concrete filled stainless steel stub columns. Mater. Struct. 2014, 47, 293–310. [Google Scholar] [CrossRef]
- Yang, Y.; Han, L. Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings. Steel Compos. Struct. 2006, 6, 257. [Google Scholar] [CrossRef]
- Yang, Y.; Han, L. Experimental behaviour of recycled aggregate concrete filled steel tubular columns. J. Constr. Steel Res. 2006, 62, 1310–1324. [Google Scholar] [CrossRef]
- Van Cao, V. Experimental behaviour of recycled aggregate concrete-filled steel tubes under axial loading. Int. J. Civ. Eng. 2019, 17, 1341–1351. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Geng, Y. Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns. Eng. Struct. 2015, 86, 192–212. [Google Scholar] [CrossRef]
- Wu, B.; Lin, L.; Zhao, J.; Yan, H. Creep behavior of thin-walled circular steel tubular columns filled with demolished concrete lumps and fresh concrete. Constr. Build. Mater. 2018, 187, 773–790. [Google Scholar] [CrossRef]
- Nour, A.I.; Güneyisi, E.M. Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns. Compos. Part B Eng. 2019, 173, 106938. [Google Scholar] [CrossRef]
- GB/T 50081-2002; Standard for Test Methods for Mechanical Properties of Ordinary Concrete. China Standard Press: Beijing, China, 2002.
- GB/T 228.1-2021; Standard for Tensile Testing Method of Metallic Materials. China Standard Press: Beijing, China, 2021.
- JCJ/T 283-2012; Technical Specification for Application of Self-Compacting Concrete. China Standard Press: Beijing, China, 2012.
- ASTM C33; Standard Specifications for Concrete Aggregates. ASTM: Philadelphia, PA, USA, 2009.
- Ekmekyapar, T.; Al-Eliwi, B.J. Experimental behaviour of circular concrete filled steel tube columns and design specifications. Thin-Walled Struct. 2016, 105, 220–230. [Google Scholar] [CrossRef]
- Tran, V.; Thai, D.; Nguyen, D. Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete. Thin-Walled Struct. 2020, 151, 106720. [Google Scholar] [CrossRef]
- Yu, Z.; Ding, F.; Cai, C.S. Experimental behavior of circular concrete-filled steel tube stub columns. J. Constr. Steel Res. 2007, 63, 165–174. [Google Scholar] [CrossRef]
- Yang, Y.F.; Hou, R. Experimental behaviour of RACFST stub columns after exposed to high temperatures. Thin-Walled Struct. 2012, 59, 1–10. [Google Scholar] [CrossRef]
- Safiuddin, M.D.; Salam, M.A.; Jumaat, M.Z. Effects of recycled concrete aggregate on the fresh properties of self-consolidating concrete. Arch. Civ. Mech. Eng. 2011, 11, 1023–1041. [Google Scholar] [CrossRef]
- Wang, H.; Huang, W. Durability of self-consolidating concrete using waste LCD glass. Constr. Build. Mater. 2010, 24, 1008–1013. [Google Scholar] [CrossRef]
- Kapoor, K.; Singh, S.P.; Singh, B. Water permeation properties of self compacting concrete made with coarse and fine recycled concrete aggregates. Int. J. Civ. Eng. 2018, 16, 47–56. [Google Scholar] [CrossRef]
- Mohseni, E.; Saadati, R.; Kordbacheh, N.; Parpinchi, Z.S.; Tang, W. Engineering and microstructural assessment of fibre-reinforced self-compacting concrete containing recycled coarse aggregate. J. Clean. Prod. 2017, 168, 605–613. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.P. Carbonation resistance and microstructural analysis of low and high volume fly ash self compacting concrete containing recycled concrete aggregates. Constr. Build. Mater. 2016, 127, 828–842. [Google Scholar] [CrossRef]
- Gesoglu, M.; Güneyisi, E.; Öz, H.Ö.; Yasemin, M.T.; Taha, I. Durability and shrinkage characteristics of self-compacting concretes containing recycled coarse and/or fine aggregates. Adv. Mater. Sci. Eng. 2015, 2015, 278296. [Google Scholar] [CrossRef]
- GB/T 228-2010; Metallic Materials Tensile Testing-Method of Test at Room Temperature. China Standard Press: Beijing, China, 2010.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sun, S.; Zhang, L.; Jia, Y. Compressive Behaviors of Thin-Walled Steel Tube Stub Columns Filled with Self-Compacting Concrete Containing Recycled Aggregate. Materials 2023, 16, 6088. https://doi.org/10.3390/ma16186088
Wang Y, Sun S, Zhang L, Jia Y. Compressive Behaviors of Thin-Walled Steel Tube Stub Columns Filled with Self-Compacting Concrete Containing Recycled Aggregate. Materials. 2023; 16(18):6088. https://doi.org/10.3390/ma16186088
Chicago/Turabian StyleWang, Yunyang, Shengwei Sun, Liqing Zhang, and Yandong Jia. 2023. "Compressive Behaviors of Thin-Walled Steel Tube Stub Columns Filled with Self-Compacting Concrete Containing Recycled Aggregate" Materials 16, no. 18: 6088. https://doi.org/10.3390/ma16186088
APA StyleWang, Y., Sun, S., Zhang, L., & Jia, Y. (2023). Compressive Behaviors of Thin-Walled Steel Tube Stub Columns Filled with Self-Compacting Concrete Containing Recycled Aggregate. Materials, 16(18), 6088. https://doi.org/10.3390/ma16186088