Sustainable Materials for Engineering Applications
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sharma, S.; Sharma, N.K. Advanced materials contribution towards sustainable development and its construction for green buildings. Mater. Today Proc. 2022, 68, 968–973. [Google Scholar] [CrossRef]
- Sangmesh, B.; Patil, N.; Jaiswal, K.K.; Gowrishankar, T.P.; Selvakumar, K.K.; Jyothi, M.S.; Jyothilakshmi, R.; Kumar, S. Development of sustainable alternative materials for the construction of green buildings using agricultural residues: A review. Constr. Build. Mater. 2023, 368, 130457. [Google Scholar] [CrossRef]
- Wei, S.; Yiqiang, C.; Yunsheng, Z.; Jones, M. Characterization and simulation of microstructure and thermal properties of foamed concrete. Constr. Build. Mater. 2013, 47, 1278–1291. [Google Scholar] [CrossRef]
- Gencel, O.; Bayraktar, O.Y.; Kaplan, G.; Arslan, O.; Nodehi, M.; Benli, A.; Gholampour, A.; Ozbakkaloglu, T. Lightweight foam concrete containing expanded perlite and glass sand: Physico-mechanical, durability, and insulation properties. Constr. Build. Mater. 2022, 320, 126187. [Google Scholar] [CrossRef]
- Yu, H.; Zahidi, I.; Liang, D. Sustainable porous-insulation concrete (SPIC) material: Recycling aggregates from mine solid waste, white waste and construction waste. J. Mater. Res. Technol. 2023, 23, 5733–5745. [Google Scholar] [CrossRef]
- Al Shouny, A.; Issa, U.H.; Miky, Y.; Sharaky, I.A. Evaluating and selecting the best sustainable concrete mixes based on recycled waste materials. Case Stud. Constr. Mater. 2023, 19, e02382. [Google Scholar] [CrossRef]
- Biswas, M.C.; Jony, B.; Nandy, P.K.; Chowdhury, R.A.; Halder, S.; Kumar, D.; Ramakrishna, S.; Hassan, M.; Ahsan, A.; Hoque, E.; et al. Recent Advancement of Biopolymers and Their Potential Biomedical Applications. J. Polym. Environ. 2022, 30, 51–74. [Google Scholar] [CrossRef]
- Román-Hidalgo, C.; Barreiros, L.; Villar-Navarro, M.; López-Pérez, G.; Martín-Valero, M.J.; Segundo, M.A. Electromembrane extraction based on biodegradable materials: Biopolymers as sustainable alternatives to plastics. TrAC Trends Anal. Chem. 2023, 162, 117048. [Google Scholar] [CrossRef]
- Mousavi-Nasab, S.H.; Sotoudeh-Anvari, A. A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Mater. Des. 2017, 121, 237–253. [Google Scholar] [CrossRef]
- Atici, K.B.; Podinovski, V.V. Using data envelopment analysis for the assessment of technical efficiency of units with different specialisations: An application to agriculture. Omega 2015, 54, 72–83. [Google Scholar] [CrossRef]
- Cicek, K.; Celik, M.; Topcu, Y.I. An integrated decision aid extension to material selection problem. Mater. Des. 2010, 31, 4398–4402. [Google Scholar] [CrossRef]
- Robinson, J.; Kumari, N.; Srivastava, V.K.; Taskaeva, N.; Mohan, C. Sustainable and environmental friendly energy materials. Mater. Today Proc. 2022, 69, 494–498. [Google Scholar] [CrossRef]
- Huang, B.; Li, X.; Wang, Z.; Guo, H.; Shen, L.; Wang, J. A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method. J. Power Sources 2014, 252, 200–207. [Google Scholar] [CrossRef]
- Benveniste, G.; Sánchez, A.; Rallo, H.; Corchero, C.; Amante, B. Comparative life cycle assessment of Li-Sulphur and Li-ion batteries for electric vehicles. Resour. Conserv. Recycl. Adv. 2022, 15, 200086. [Google Scholar] [CrossRef]
- Xu, P.; Tan, D.H.; Gao, H.; Rose, S.; Chen, Z. Recycling of Li-Ion Batteries for Electric Vehicles. Encycl. Energy Storage 2021, 4, 98–107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aabid, A.; Baig, M. Sustainable Materials for Engineering Applications. Materials 2023, 16, 6085. https://doi.org/10.3390/ma16186085
Aabid A, Baig M. Sustainable Materials for Engineering Applications. Materials. 2023; 16(18):6085. https://doi.org/10.3390/ma16186085
Chicago/Turabian StyleAabid, Abdul, and Muneer Baig. 2023. "Sustainable Materials for Engineering Applications" Materials 16, no. 18: 6085. https://doi.org/10.3390/ma16186085
APA StyleAabid, A., & Baig, M. (2023). Sustainable Materials for Engineering Applications. Materials, 16(18), 6085. https://doi.org/10.3390/ma16186085