Bioactive Polyoxymethylene Composites: Mechanical and Antibacterial Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used and Sample Preparation
2.2. Antibacterial Properties
2.3. Mechanical Analysis
2.4. Water Absorption
3. Results and Discussion
3.1. Antibacterial Activities of Nanocomposites Based on POM
3.2. Mechanical Properties Investigations
3.3. Mechanical Hysteresis Loops
3.4. Water Absorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed]
- Boczkowska, A.; Kapuściński, J.; Lindemann, Z.; Witemberg-Perzyk, D.; Wojciechowski, S. Kompozyty, II; Oficyna Wydawnicza | Politechniki Warszawskiej: Warszawa, Poland, 2003; pp. 22–32. [Google Scholar]
- Lüftl, S.; Visakh, P.M.; Chandran, S. Polyoxymethylene Handbook: Structure, Properties, Applications and Their Nanocomposites; John Wiley & Sons: New Jersey, NJ, USA, 2014; pp. 1–11. [Google Scholar]
- Hu, K.H.; Wang, J.; Schraube, S.; Xu, Y.F.; Hu, X.G.; Stengler, R. Tribological properties of MoS2 nano-balls as filler in polyoxymethylene-based composite layer of three-layer self-lubrication bearing materials. Wear 2009, 266, 1198–1207. [Google Scholar] [CrossRef]
- Bartholet, D.L.; Arellano-Treviño, M.A.; Chan, F.L.; Lucas, S.; Zhu, J.; John, P.C.S.; Reardon, K.F. Property predictions demonstrate that structural diversity can improve the performance of polyoxymethylene ethers as potential bio-based diesel fuels. Fuel 2021, 295, 120509. [Google Scholar] [CrossRef]
- Kuciel, S.; Bazan, P.; Liber-Kneć, A.; Gądek-Moszczak, A. Physico-mechanical properties of the poly (oxymethylene) composites reinforced with glass fibers under dynamical loading. Polymers 2019, 11, 2064. [Google Scholar] [CrossRef] [PubMed]
- Borjihan, Q.; Dong, A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater. Sci. 2020, 8, 6867–6882. [Google Scholar] [CrossRef] [PubMed]
- Makvandi, P.; Wang, C.Y.; Zare, E.N.; Borzacchiello, A.; Niu, L.N.; Tay, F.R. Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 2020, 30, 1910021. [Google Scholar] [CrossRef]
- Gu, X.; Xu, Z.; Gu, L.; Xu, H.; Han, F.; Chen, B.; Pan, X. Preparation and antibacterial properties of gold nanoparticles: A review. Environ. Chem. Lett. 2021, 19, 167–187. [Google Scholar] [CrossRef]
- Li, S.-C.; Bang, L.; Zong-Jie, Q. The effect of the Nano-ZnO concentration on the mechanical, antibacterial and melt rheological properties of LLDPE/modified Nano-ZnO composite films. Polym. Plast. Technol. Eng. 2010, 49, 1334–1338. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, Y.; Wang, L.; Huang, H.; Zhang, X.; Liu, Y.; Min, M.; Li, Y. Effect of silver nanoparticles on the microstructure, non-isothermal crystallization behavior and antibacterial activity of polyoxymethylene. Polymers 2020, 12, 424. [Google Scholar] [CrossRef]
- Mie, R.; Samsudin, M.W.; Din, L.B.; Ahmad, A.; Ibrahim, N.; Adnan, S.N.A. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int. J. Nanomed. 2014, 9, 121–127. [Google Scholar] [CrossRef]
- Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomed. 2012, 7, 2767–2781. [Google Scholar]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Yeo, S.Y.; Yi, S.C. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J. Mater. Sci. 2005, 40, 5407–5411. [Google Scholar] [CrossRef]
- Bera, R.K.; Mandal, S.M.; Retna Raj, C. Antimicrobial Activity of Fluorescent Ag Nanoparticles. Lett. Appl. Microbiol. 2014, 58, 520–526. [Google Scholar] [CrossRef]
- Bazan, P.; Mazur, K.E.; Rybicka, K.; Kuciel, S. The influence of organic and inorganic antibacterial additives on the strength and biocidal properties of thermoplastic elastomers (TPO). Ind. Crops Prod. 2023, 198, 116682. [Google Scholar] [CrossRef]
- Alli, Y.A.; Adewuyi, S.; Bada, B.S.; Thomas, S.; Anuar, H. Quaternary trimethyl chitosan chloride capped bismuth nanoparticles with positive surface charges: Catalytic and antibacterial activities. J. Clust. Sci. 2022, 33, 2311–2324. [Google Scholar] [CrossRef]
- Khan, S.T.; Al-Khedhairy, A.A.; Musarrat, J. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: A review. J. Nanopart. Res. 2015, 17, 276. [Google Scholar] [CrossRef]
- Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 2013, 87, 1181–1200. [Google Scholar] [CrossRef]
- Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 035004. [Google Scholar] [CrossRef]
- Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomed. 2011, 7, 6003–6009. [Google Scholar] [CrossRef]
- Klementina Pušnik, C. Effects of Ag, ZnO and TiO2 nanoparticles at low contents on the crystallization, semicrystalline morphology, interfacial phenomena and segmental dynamics of PLA. Mater. Today Commun. 2021, 27, 102192. [Google Scholar]
- Li Bo, D.; Rui, J.; Li, J.T. The effect of nanoparticles modification on PLA/nano-ZnO composite. Appl. Mech. Mater. 2013, 420, 230–233. [Google Scholar]
- Yicheng, Z. Effect of silver nanoparticles on the melting behavior, isothermal crystallization kinetics and morphology of polyoxymethylene. Crystals 2020, 10, 594. [Google Scholar]
- Wacharawichanant, S. Effect of particle sizes of zinc oxide on mechanical, thermal and morphological properties of polyoxymethylene/zinc oxide nanocomposites. Polym. Test. 2008, 27, 971–976. [Google Scholar] [CrossRef]
- Wacharawichanant, S. Effects of particle type on thermal and mechanical properties of polyoxymethylene nanocomposites. J. Appl. Polym. Sci. 2012, 123, 3217–3224. [Google Scholar] [CrossRef]
- ISO 3167:2014-09; Plastics—Universal Test Specimens. ISO: Geneva, Switzerland, 2014.
- ISO 527-1:2019; Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO: Geneva, Switzerland, 2019.
- ISO 178:2019-06; Plastics—Determination of Bending Properties. ISO: Geneva, Switzerland, 2019.
- ISO 179-2:2020-12; Plastics—Charpy Impact Testing—Part 2: Instrumental Impact Testing. ISO: Geneva, Switzerland, 2020.
- ISO 62:2008; Plastics—Determination of Water Absorption. ISO: Geneva, Switzerland, 2008.
- Jones, A. Killer plastics: Antimicrobial additives for polymers. Plast. Eng. 2008, 64, 34–40. [Google Scholar] [CrossRef]
- Pittol, M.; Tomacheski, D.; Simões, D.N.; Ribeiro, V.F.; Santana, R.M.C. Antimicrobial performance of thermoplastic elastomers containing zinc pyrithione and silver nanoparticles. Mater. Res. 2017, 20, 1266–1273. [Google Scholar] [CrossRef]
- Stanić, V.; Tanasković, S.B. Antibacterial activity of metal oxide nanoparticles. In Nanotoxicity; Elsevier: Amsterdam, The Netherlands, 2020; pp. 241–274. [Google Scholar]
- Alhadrami, H.A.; Al-Hazmi, F. Antibacterial activities of titanium oxide nanoparticles. J. Bioelectron. Nanotechnol. 2017, 2, 5. [Google Scholar]
- Erdural, B.K.; Yurum, A.; Bakir, U.; Karakas, G. Antimicrobial properties of titanium nanoparticles. In Functionalized Nanoscale Materials, Devices and Systems; Springer: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Haghighi, F.; Roudbar Mohammadi, S.; Mohammadi, P.; Hosseinkhani, S.; Shipour, R. Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect. Epidemiol. Microbiol. 2013, 1, 33–38. [Google Scholar]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Sunada, K.; Iyoda, T.; Hashimoto, K.; Fujishima, A. Photocatalytic bactericidal effect of TiO2 thin films: Dynamic view of the active oxygen species responsible for the effect. J. Photochem. Photobiol. A Chem. 1997, 106, 51–56. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Manivannan, G.; Kim, S.J.; Jeyasubramanian, K.; Premanathan, M. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J. Nanopart Res. 2012, 14, 1063–1073. [Google Scholar] [CrossRef]
- Chen, F.; Yang, X.; Wu, Q. Antifungal capability of TiO2 coated film on moist wood. Build. Environ. 2009, 44, 1088–1093. [Google Scholar] [CrossRef]
- Fu, P.P.; Xia, Q.; Hwang, H.-M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 2014, 22, 64–75. [Google Scholar] [CrossRef]
- Filimon, A.; Onofrei, M.D.; Bargan, A.; Stoica, I.; Dunca, S. Bioactive Materials Based on Hydroxypropyl Methylcellulose and Silver Nanoparticles: Structural-Morphological Characterization and Antimicrobial Testing. Polymers 2023, 15, 1625. [Google Scholar] [CrossRef]
- He, J.; Zhang, L.; Li, C.; Yan, B.; Tang, R. The Effects of Copper and Polytetrafluoroethylene (PTFE) on Thermal Conductivity and Tribological Behavior of Polyoxymethylene (POM) Composites. J. Macromol. Sci. Part B 2011, 50, 2023–2033. [Google Scholar] [CrossRef]
- Alli, Y.A.; Ejeromedoghene, O.; Oladipo, A.; Adewuyi, S.; Amolegbe, S.A.; Anuar, H.; Thomas, S. Compressed hydrogen-induced synthesis of quaternary trimethyl chitosan-silver nanoparticles with dual antibacterial and antifungal activities. ACS Appl. Bio Mater. 2022, 5, 5240–5254. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, L.; Li, C. Thermal Conductivity and Tribological Properties of POM-Cu Composites. Polym. Eng. Sci. 2010, 50, 2153–2159. [Google Scholar] [CrossRef]
- Yu, L.; Yang, S.; Wang, H.; Xue, Q. Investigation of the friction and wear behaviors of micrometer copper particle- and nanometer copper particle-filled polyoxymethylene composites. J. Appl. Polym. Sci. 2000, 77, 2404–2410. [Google Scholar] [CrossRef]
- Pielichowska, K.; Bieliński, D.; Dworak, D.; Kilian, E.; Macherzyńska, B.; Błazewicz, S. The Influence of Nanohydroxyapatite on the Thermal, Mechanical, and Tribological Properties of Polyoxymethylene Nanocomposites. Int. J. Polym. Sci. 2017, 2017, 905191. [Google Scholar] [CrossRef]
- Pielichowska, K. The influence of molecular weight on the properties of polyacetal/hydroxyapatite nanocomposites. J. Polym. Res. 2012, 19, 9788. [Google Scholar] [CrossRef]
- Shrestha, R.; Simsiriwong, J.; Shamsaei, N. Mean strain effects on cyclic deformation and fatigue behavior of polyether ether ketone (PEEK). Polym. Test. 2016, 55, 69–77. [Google Scholar] [CrossRef]
- Cieszyński, T.; Topoliński, T. Badania zmęczeniowe kompozytów polimerowych przy sterowaniu energią dyssypacji. Czas. Tech. Mech. -WPK. Mech. 2006, 103, 115–119. [Google Scholar]
- Marom, G. The Role of Water Transport in Composite Materials. In Polymer Permeability; Comyn, J., Ed.; Chapman & Hall: London, UK, 1985; pp. 341–374. [Google Scholar]
- Duncan, B.C.; Broughton, W.R. Measurement Good Practice Guide No. 102 Absorption and Diffusion of Moisture in Polymeric Materials. Meas. Good Pract. Guid. 2007, 102, 1–65. [Google Scholar] [CrossRef]
- Olewnik-Kruszkowska, E.; Kasperska, P.; Koter, I. Effect of poly (ε-caprolactone) as plasticizer on the properties of composites based on polylactide during hydrolytic degradation. React. Funct. Polym. 2016, 103, 99–107. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.A.; Richardson, M.O. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos. Sci. Technol. 2007, 67, 1674–1683. [Google Scholar] [CrossRef]
Properties | Value from Technical Data Sheet |
---|---|
Density (kg/m3) | 1410 |
Flexural modulus, 23 °C (MPa) | 2550 |
Ball indentation hardness, 30 s (MPa) | 147 |
Melting temperature (°C) | 166 |
Melt volume rate, MVR (cm3/10 min) | 24 |
Material | Cylinder Zone Temperatures (°C) | Mold Temperature (°C) | Pressure in the Clamping Phase (MPa) | |||
---|---|---|---|---|---|---|
I | II | III | IV | |||
All compositions | 175 | 185 | 195 | 200 | 60 | 100 |
Sample | Description |
---|---|
POM | Reference sample—polyoxymethylene (POM-C; Tarnoform 500 CE) |
POM + Ag 2% | Polyoxymethylene (POM-C; Tarnoform 500 CE) with 2 wt% silver (Ag) nanopowder/nanoparticles, purity: >99.995%, size: 28–48 nm, manufacturer: Nanografii (Ankara, Turkey) |
POM + ZnO 2% | Polyoxymethylene (POM-C; Tarnoform 500 CE) with 2 wt% zinc oxide (ZnO) nanopowder, purity: >99.5%, size: 30–50 nm, manufacturer: Nanografii (Ankara, Turkey) |
POM + TiO2 2% | Polyoxymethylene (POM-C; Tarnoform 500 CE) with 2 wt% titanium (IV) oxide, 98+%, anarase powder; size: 1 µm; manufacturer: Acros Organics B.V.B.A.a part of Thermo Fisher Scientific (Waltham, MA, USA) |
POM + CuO s 2% | Polyoxymethylene (POM-C; Tarnoform 500 CE) with 2 wt% copper nanooxide (CuO); nanowires; size: 40–60 nm; manufacturer: Suzhou Canfuo Nanotechnology Co., Ltd. (Suzhou, China) |
POM + CuO l 2% | Polyoxymethylene (POM-C; Tarnoform 500 CE) with 2 wt% copper oxide (CuO) particles; size: 10–20 µm; manufacturer: Suzhou Canfuo Nanotechnology Co., Ltd. (Suzhou, China) |
Sample | Degree of Escherichia coli Viability Reduction (%) | Degree of Staphylococcus aureus Viability Reduction (%) |
---|---|---|
POM + Ag 2% | 0 | 26 |
POM + ZnO 2% | 68 | 29 |
POM + TiO2 2% | 100 | 96 |
POM + CuO s 2% | 4 | 51 |
POM + CuO l 2% | 0 | 26 |
Sample | Tensile Strength σm [MPa] | Young’s Modulus E [Mpa] | Strain at Ultimate Strength [%] |
---|---|---|---|
POM | 57.9 ± 2 | 3717 ± 137 | 8.0 ± 0.2 |
POM + 2% Ag | 56.7 ± 1 | 3463 ± 155 | 7.9 ± 0.6 |
POM + 2% ZnO | 56.4 ± 1 | 3549 ± 102 | 8.2 ± 0.2 |
POM + 2% TiO2 | 56.5 ± 0.5 | 3555 ± 358 | 8.2 ± 0.2 |
POM + 2% CuO s | 57.6 ± 0.8 | 3602 ± 44 | 8.1 ± 0.4 |
POM + 2% CuO l | 56.5 ± 1.1 | 3771 ± 74 | 6.9 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczor, P.; Bazan, P.; Kuciel, S. Bioactive Polyoxymethylene Composites: Mechanical and Antibacterial Characterization. Materials 2023, 16, 5718. https://doi.org/10.3390/ma16165718
Kaczor P, Bazan P, Kuciel S. Bioactive Polyoxymethylene Composites: Mechanical and Antibacterial Characterization. Materials. 2023; 16(16):5718. https://doi.org/10.3390/ma16165718
Chicago/Turabian StyleKaczor, Paulina, Patrycja Bazan, and Stanisław Kuciel. 2023. "Bioactive Polyoxymethylene Composites: Mechanical and Antibacterial Characterization" Materials 16, no. 16: 5718. https://doi.org/10.3390/ma16165718
APA StyleKaczor, P., Bazan, P., & Kuciel, S. (2023). Bioactive Polyoxymethylene Composites: Mechanical and Antibacterial Characterization. Materials, 16(16), 5718. https://doi.org/10.3390/ma16165718