Analysis of the Performance of Recycled Insulation Concrete and Optimal Mix Ratio Design Based on Orthogonal Testing
Abstract
:1. Introduction
2. Materials and Testing Method
2.1. Material
2.2. Basic Mix Ratio Design
2.3. Breakage Rate Test of Glazed Hollow Beads
2.4. Orthogonal Test Design
2.5. Test Preparation and Performance Testing
3. Results and Analysis
3.1. Results
3.2. Range Analysis
3.2.1. Range Analysis of Mechanical Properties
3.2.2. Range Analysis of Insulation Properties
3.3. Variance Analysis
3.3.1. Variance Analysis of Mechanical Properties
3.3.2. Variance Analysis of Insulation Properties
3.4. Relationship between Thermal Conductivity and Dry Density
3.5. Optimal Mix Ratio Design
4. Discussion
4.1. Effects of the Single Factors on Mechanical Properties
4.2. Effects of the Single Factors on Thermal Conductivity
5. Conclusions
- The following describes the degree of influence for mechanical properties: glazed hollow beads trump recycled aggregate and straw. In terms of thermal conductivity, glazed hollow beads have a greater impact than recycled aggregate and straw.
- The optimal mix ratio of recycled insulation concrete was found in the 14th orthogonal test group. The recycled aggregate replacement rate in this group was 100%, the straw content was 1%, and the glazed hollow beads replacement rate was 10%. The compressive strength of recycled insulation concrete with this optimal mix ratio is 20.98 MPa, the splitting tensile strength is 2.01 MPa, the thermal conductivity is 0.3776 W/(mK), and the dry density is 1778.66 kg/m3.
- The equation for the relationship between thermal conductivity and dry density is . As the dry density decreases, the thermal conductivity decreases.
- The macro performance and internal microstructure were simply combined in this investigation. In the future, macroscale, mesoscale, and microscale can be combined to study the internal heat transfer mechanism of insulation concrete more thoroughly.
- This study only takes into account the mechanical properties of recycled insulation concrete; future studies may take into account the durability of recycled insulation concrete in order to apply it to various building structures and increase the rate at which solid waste resources are utilized.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, J.Z.; Hao, L.C.; Cao, W.Z.; Xu, W.B. Research progress and influencing factors of thermal conductivity of recycled concrete. J. Tongji Univ. Nat. Sci. 2022, 50, 378–388. [Google Scholar]
- Boros, A.; Erdei, G.; Korim, T. Development of Alkali Activated Inorganic Foams Based on Construction and Demolition Wastes for Thermal Insulation Applications. Materials 2023, 16, 4065. [Google Scholar] [PubMed]
- Deng, J.-X.; Li, X.; Li, X.-J.; Wei, T.-B. Research on the Performance of Recycled-Straw Insulating Concrete and Optimization Design of Matching Ratio. Sustainability 2023, 15, 9608. [Google Scholar]
- Xiao, J.Z.; Poon, C.S.; Zhao, Y.X.; Wang, Y.Y.; Ye, T.H.; Duan, Z.H.; Peng, L.G. Fundamental behavior of recycled aggregate concrete—Overview II: Durability and enhancement. Mag. Concr. Res. 2022, 74, 1011–1026. [Google Scholar]
- Xiao, J.Z.; Zhang, H.H.; Tang, Y.X.; Lu, Z.Y.; Ye, T.H.; Duan, Z.H.; Sui, T.B.; Xiao, X.W. Principles for waste concrete recycling and basic problems of recycled concrete. Chin. Sci. Bull. 2023, 68, 510–523. [Google Scholar]
- Afsarian, F.; Saber, A.; Pourzangbar, A.; Olabi, A.G.; Khanmohammadi, M.A. Analysis of recycled aggregates effect on energy conservation using M5′ model tree algorithm. Energy 2018, 156, 264–277. [Google Scholar]
- Behera, M.; Bhattacharyya, S.K.; Minocha, A.K.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516. [Google Scholar]
- Silva, R.V.; de Brito, J.; Dhir, R.K. Use of recycled aggregates arising from construction and demolition waste in new construction applications. J. Clean. Prod. 2019, 236, 117629. [Google Scholar]
- Shi, L. Analysis of current situation of construction waste and development of resource utilization process in China. Constr. Mater. Decor. 2020, 607, 161–162. [Google Scholar]
- Ghisellini, P.; Ripa, M.; Ulgiati, S. Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature reviews. J. Clean. Prod. 2018, 178, 618–643. [Google Scholar]
- Perez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar]
- Feng, W.; Huang, J.N.; Lv, H.L.; Guo, D.P.; Huang, Z.C. Determination of the economical insulation thickness of building envelopes simultaneously in energy-saving renovation of existing residential buildings. Energy Source Part A 2019, 41, 665–676. [Google Scholar]
- Guo, H.; Shi, C.J.; Guan, X.M.; Zhu, J.P.; Ding, Y.H.; Ling, T.C.; Zhang, H.B.; Wang, Y.L. Durability of recycled aggregate concrete—A review. Cem. Concr. Compos. 2018, 89, 251–259. [Google Scholar]
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A review of recycled aggregate in concrete applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar]
- Gencel, O.; Bayraktar, O.Y.; Kaplan, G.; Arslan, O.; Nodehi, M.; Benli, A.; Gholampour, A.; Ozbakkaloglu, T. Lightweight foam concrete containing expanded perlite and glass sand: Physico-mechanical, durability, and insulation properties. Constr. Build. Mater. 2022, 320, 126187. [Google Scholar]
- Xiao, J.Z.; Song, Z.W.; Zhang, F. Test and analysis of thermal conductivity of concrete. J. Build. Mater. 2010, 13, 17–21. [Google Scholar]
- Zhu, L.H.; Dai, J.; Bai, G.L. Test and analysis of thermal conductivity of recycled concrete. J. Build. Mater. 2015, 18, 852–856+904. [Google Scholar]
- Laneyrie, C.; Beaucour, A.L.; Green, M.F.; Hebert, R.L.; Ledesert, B.; Noumowe, A. Influence of recycled coarse aggregates on normal and high-performance concrete subjected to elevated temperatures. Constr. Build. Mater. 2016, 111, 368–378. [Google Scholar]
- Akhtar, A.; Sarmah, A.K. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 2018, 186, 262–281. [Google Scholar]
- Pesta, J.; Pavlu, T.; Fortova, K.; Koci, V. Sustainable Masonry Made from Recycled Aggregates: LCA Case Study. Sustainability 2020, 12, 1581. [Google Scholar]
- Song, Z.N. Indoor Experiments and Numerical Simulations on the Mechanical and Thermal Insulation Properties of Straw Concrete. Master’s Thesis, Jilin University, Jilin, China, 2015. [Google Scholar]
- Ataie, F. Influence of Rice Straw Fibers on Concrete Strength and Drying Shrinkage. Sustainability 2018, 10, 2445. [Google Scholar]
- Liu, T.; Zhao, M.H.; Nie, G.H.; Lin, F.; Wu, X.T. Effect of Compounding Fly Ash with Rice Straw Fiber on the Mechanical Properties of Concrete. Concr. Cem. Prod. 2021, 11, 64–67+72. [Google Scholar]
- Li, C.F.; Su, Y.W.; Chen, G.P.; Wang, F. Experimental Study on the Performance of Rice Straw Fiber Reinforced Concrete. Constr. Technol. 2013, 24, 63–66. [Google Scholar]
- Li, C.F.; Su, Y.W.; Chen, G.P. Current Status of Research on Plant Fiber Concrete. Hunningtu 2013, 5, 55–56+61. [Google Scholar]
- Merli, R.; Preziosi, M.; Acampora, A.; Lucchetti, M.C.; Petrucci, E. Recycled fibers in reinforced concrete: A systematic literature review. J. Clean. Prod. 2020, 248, 119207. [Google Scholar]
- Hakeem, I.Y.; Amin, M.; Zeyad, A.M.; Tayeh, B.A.; Maglad, A.M.; Agwa, I.S. Effects of nano sized sesame stalk and rice straw ashes on high-strength concrete properties. J. Clean. Prod. 2022, 370, 133542. [Google Scholar]
- Chen, D.; Song, X.Y.; Jiang, Z.P.; He, Z.H. Effect of mixture of straw and fly ash on concrete properties. China Concr. Cem. Prod. 2020, 4, 100–103. [Google Scholar]
- Tu, J.S.; Wang, Y.J.; Zhou, M.; Zhang, Y. Heat transfer mechanism of glazed hollow bead insulation concrete. J. Build. Eng. 2021, 40, 102629. [Google Scholar]
- Su, Z.H.; Guo, L.; Zhang, Z.H.; Duan, P. Influence of different fibers on properties of thermal insulation composites based on geopolymer blended with glazed hollow bead. Constr. Build. Mater. 2019, 203, 525–540. [Google Scholar]
- Wang, X.X.; Wang, W.J.; Huang, J.Y.; Wang, Z.X.; Ma, S.J.; Liu, Y.Z. Relationship between internal humidity and drying shrinkage of recycled aggregate thermal insulation concrete considering recycled aggregate content. Constr. Build. Mater. 2022, 355, 129224. [Google Scholar]
- Zhang, Z.P. Experimental and Theoretical Analysis of the Basic Performance of Glass Bead Insulating Concrete and Its Structure. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2009. [Google Scholar]
- Zhang, H.Z.; Yan, Y.H.; Cui, X.Q. Mix ratio optimization of self-insulating recycled concrete based on total efficiency coefficient method. Sichuan Build. Sci. 2017, 43, 112–115+135. [Google Scholar]
- Liu, J.Y. Experimental Study on Seismic Performance of Vitrified Microbead Insulated Concrete Hollow Shear Wall. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2016. [Google Scholar]
- Anderson, D.J.; Smith, S.T.; Au, F.T. Mechanical properties of concrete utilising waste ceramic as coarse aggregate. Constr. Build. Mater. 2016, 117, 20–28. [Google Scholar]
- Rashad, A.M.; Sadek, D.M.; Hassan, H.A. An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures. J. Clean. Prod. 2016, 112, 1086–1096. [Google Scholar]
- Ostrowski, K.; Stefaniuk, D.; Sadowski, Ł.; Krzywiński, K.; Gicala, M.; Różańska, M. Potential use of granite waste sourced from rock processing for the application as coarse aggregate in high-performance self-compacting concrete. Constr. Build. Mater. 2020, 238, 117794. [Google Scholar]
- JGJ55-2011; Ordinary Concrete Ratio Design Regulations. National Standards of the People’s Republic of China: Beijing, China, 2011.
- JGJ51-2002; Light Aggregate Concrete Technical Regulations. National Standards of the People’s Republic of China: Beijing, China, 2002.
- Wang, W.J.; Zhao, L.; Liu, Y.Z.; Li, Z. Mechanical properties and stress-strain relationship in axial compression for concrete with added glazed hollow beads and construction waste. Constr. Build. Mater. 2014, 71, 425–434. [Google Scholar]
- Wang, Z.X.; Liu, Y.Z.; Tu, J.S.; Wang, W.J. Effects of glazed hollow beads on the drying shrinkage value and trend of recycled aggregate concrete. J. Build. Eng. 2023, 68, 106021. [Google Scholar]
- Zhu, L.H.; Dai, J.; Bai, G.L.; Zhang, F.J. Study on thermal properties of recycled aggregate concrete and recycled concrete blocks. Constr. Build. Mater. 2015, 94, 620–628. [Google Scholar]
- Liu, D.; Zhang, W.; Tang, Y.; Jian, Y.; Lai, Y. Orthogonal Experimental Study on Concrete Properties of Machine-Made Tuff Sand. Materials 2022, 15, 3516. [Google Scholar] [PubMed]
- GB/T 50081-2002; General Concrete Mechanical Properties Test Method Standard. National Standards of the People’s Republic of China: Beijing, China, 2002.
- GB/T10294-2008; Determination of Steady-State Thermal Resistance and Related Properties of Thermal Insulation Materials by Protective Thermal Plate Method. National Standards of the People’s Republic of China: Beijing, China, 2008.
- Zhang, X.; Zhou, G.; Xu, P.; Fu, L.; Deng, D.; Kuang, X.; Fan, Y. Mechanical Properties under Compression and Microscopy Analysis of Basalt Fiber Reinforced Recycled Aggregate Concrete. Materials 2023, 16, 2520. [Google Scholar] [PubMed]
- Wang, C.Y.; Ji, H.G. Sensitivity Analysis of Influencing Factors for Similar Material Based on Orthogonal Test Design. Electron. J. Geotech. Eng. 2016, 21, 13513. [Google Scholar]
- Yahye, M.A.; Liu, L.J.; Wu, H.L.; Sun, Y.M.; Sun, H.; Ma, J.; Zhang, L.Z. Experimental research on mechanical properties of Fiber-Reinforced Polyurethane Elastic Concrete (FRPEC). Constr. Build. Mater. 2022, 328, 126929. [Google Scholar]
- Aslani, F.; Ma, G.W.; Wan, D.L.Y.; Muselin, G. Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. J. Clean. Prod. 2018, 182, 553–566. [Google Scholar]
- Chen, C.H.; Zhu, P.H.; Tian, B. Optimized Design of Glass Beads Recycled Insulating Concrete Ratio. Concr. Cem. Prod. 2014, 4, 67–70. [Google Scholar]
- Zhan, P.M.; Zhang, X.X.; He, Z.H.; Shi, J.Y.; Gencel, O.; Yen, N.T.H.; Wang, G.C. Strength, microstructure and nanomechanical properties of recycled aggregate concrete containing waste glass powder and steel slag powder. J. Clean. Prod. 2022, 341, 130892. [Google Scholar]
- Chen, T.; Ma, T.; Huang, X.M.; Ma, S.J.; Tang, F.L.; Wu, S.P. Microstructure of synthetic composite interfaces and verification of mixing order in cold-recycled asphalt emulsion mixture. J. Clean. Prod. 2020, 263, 121467. [Google Scholar]
- Liu, H.L. Study of Mechanical and Thermal Conductivity of Recycled Concrete Based on Fine Scale. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2022. [Google Scholar]
- Zhu, C.; Zhao, W.T.; Yu, W.H.; Liu, C. Basic mechanical properties and constitutive model of recycled brick-concrete aggregate. Acta Mater. Compos. Sin. 2023, 1, 14. [Google Scholar]
- Xiao, J.Z.; Ma, Z.M.; Sui, T.B.; Akbarnezhad, A.; Duan, Z.H. Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste. J. Clean. Prod. 2018, 188, 720–731. [Google Scholar]
- Zhang, Q.; Li, Y.Z.; Liu, B.H. Research Progress on the Application of Straw Resources in Concrete. Bull. Chin. Silic. Soc. 2015, 34, 1000–1003. [Google Scholar]
- Zhao, L.; Wang, W.; Li, Z.; Chen, Y.F. An experimental study to evaluate the effects of adding glazed hollow beads on the mechanical properties and thermal conductivity of concrete. Mater. Res. Innov. 2015, 19, 929–935. [Google Scholar]
- Xiao, J.Z.; Li, W.G.; Fan, Y.H.; Huang, X. An overview of study on recycled aggregate concrete in China (1996–2011). Constr. Build. Mater. 2012, 31, 364–383. [Google Scholar]
- Zhang, Q.; Li, Y.Z.; Xu, L.; Lun, P.Y. Bond strength and corrosion behavior of rebar embedded in straw ash concrete. Constr. Build. Mater. 2019, 205, 21–30. [Google Scholar]
- Li, L.J. Thermal Performance Test and Energy Saving Study of Construction Waste Recycled Concrete. Master’s Thesis, Chongqing University, Chongqing, China, 2017. [Google Scholar]
Components | SiO2 | CaO | Al2O3 | Fe2O3 | SO3 | MgO | Loss |
---|---|---|---|---|---|---|---|
Content (%) | 20.30 | 60.39 | 5.10 | 4.30 | 2.24 | 2.57 | 2.1 |
Type | Particle Size (mm) | Packing Density (kg/m3) | Apparent Density (kg/m3) | Crushing Indicator (%) | Water Absorption (%) |
---|---|---|---|---|---|
Natural coarse aggregate | 5~16 | 1442 | 2660 | 7.5 | 1.1 |
Recycled coarse aggregate | 5~16 | 1320 | 2380 | 14.5 | 3.4 |
Particle Size (mm) | Stacking Density (kg/m3) | Cylinder Compression Strength (Kpa) | Thermal Conductivity K)) | 24 h Water Absorption (%) | Surface Vitrified Closed Porosity (%) | Volume Flotation Rate (%) |
---|---|---|---|---|---|---|
0.5~1.5 | 114 | 191 | 0.041 | 230 | 95 | 91 |
Dry Bulk Density (kg.m3) | Wet Bulk Density (kg/m3) | Loose Bulk Density (kg/m3) | Compacting Bulk Density (kg/m3) | Porosity (%) | Mass of Water Absorption (%) | Volume of Water Absorption (%) | |
---|---|---|---|---|---|---|---|
191 ± 17 | 108 ± 6 | 164 ± 13 | 164 ± 13 | 82 ± 5 | 353 ± 16 | 207 ± 23 | 0.09 |
Materials | Water (kg/m3) | Cement (kg/m3) | Fine Aggregate (kg/m3) | Natural Coarse Aggregate (kg/m3) | Water Reducer (kg/m3) |
---|---|---|---|---|---|
content | 200 | 420 | 736.75 | 1016.7 | 4.2 |
Materials | Normal Concrete (NC) | 5% Glazed Hollow Beads Replacement Rate (GHBC5) | 10% Glazed Hollow Beads Replacement Rate (GHBC10) | 15% Glazed Hollow Beads Replacement Rate (GHBC15) |
---|---|---|---|---|
Cement (kg/m3) | 420 | 420 | 420 | 420 |
Natural coarse aggregate (kg/m3) | 1016.7 | 1016.7 | 1016.7 | 1016.7 |
Sand (kg/m3) | 736.75 | 699.91 | 663.075 | 626.24 |
Glazed hollow beads (kg/m3) | 0 | 36.84 | 73.675 | 110.51 |
Water reducer (kg/m3) | 4.2 | 4.2 | 4.2 | 4.2 |
Concrete Parameter | NC | GHBC5 | GHBC10 | GHBC15 |
---|---|---|---|---|
Slump (mm) | 145 | 136 | 150 | 142 |
Pre-wetting water consumption (kg/m3) | 0 | 84.73 | 169.45 | 254.17 |
Stirring water consumption (kg/m3) | 200 | 182.36 | 153.40 | 122.73 |
Breakage release water volume (kg/m3) | 0 | 17.64 | 46.60 | 77.27 |
Breakage rate () | 0 | 20.82 | 27.50 | 30.40 |
Level | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Factor | |||||
(A) Recycled coarse aggregate (%) | 0 | 30 | 70 | 100 | |
(B) Straw (%) | 0 | 1 | 2 | 3 | |
(C) Glazed hollow beads (%) | 0 | 5 | 10 | 15 |
Number | Cement (kg/m3) | Natural Coarse Aggregate (kg/m3) | Sand (kg/m3) | Recycled Coarse Aggregate (kg/m3) | Straw (kg/m3) | Glazed Hollow Beads (kg/m3) | Actual Water Consumption (kg/m3) | Water Reducer (kg/m3) |
---|---|---|---|---|---|---|---|---|
1 | 420 | 1016.7 | 736.75 | 0 | 0 | 0 | 200 | 4.2 |
2 | 420 | 1016.7 | 699.91 | 0 | 4.2 | 36.84 | 182.37 | 4.2 |
3 | 420 | 1016.7 | 663.07 | 0 | 8.4 | 73.68 | 153.4 | 4.2 |
4 | 420 | 1016.7 | 626.24 | 0 | 12.6 | 110.51 | 122.73 | 4.2 |
5 | 420 | 711.7 | 699.91 | 305 | 0 | 36.84 | 189.39 | 4.2 |
6 | 420 | 711.7 | 736.75 | 305 | 4.2 | 0 | 207.02 | 4.2 |
7 | 420 | 711.7 | 626.24 | 305 | 8.4 | 110.51 | 129.75 | 4.2 |
8 | 420 | 711.7 | 663.07 | 305 | 12.6 | 73.68 | 160.42 | 4.2 |
9 | 420 | 305 | 663.07 | 711.7 | 0 | 73.68 | 169.77 | 4.2 |
10 | 420 | 305 | 626.24 | 711.7 | 4.2 | 110.51 | 139.10 | 4.2 |
11 | 420 | 305 | 736.75 | 711.7 | 8.4 | 0 | 216.27 | 4.2 |
12 | 420 | 305 | 699.91 | 711.7 | 12.6 | 36.84 | 198.75 | 4.2 |
13 | 420 | 0 | 626.24 | 1016.7 | 0 | 110.51 | 146.11 | 4.2 |
14 | 420 | 0 | 663.07 | 1016.7 | 4.2 | 73.68 | 176.78 | 4.2 |
15 | 420 | 0 | 699.91 | 1016.7 | 8.4 | 36.84 | 205.76 | 4.2 |
16 | 420 | 0 | 736.75 | 1016.7 | 12.6 | 0 | 223.38 | 4.2 |
Number | Recycled Aggregates (A)/% | Straw (B)/% | Glazed Hollow Beads (C)/% | Compressive Strength (MPa) | Splitting Tensile Strength (MPa) |
---|---|---|---|---|---|
1 | 0 | 0 | 0 | 38.73 | 3.58 |
2 | 0 | 1 | 5 | 27.87 | 2.84 |
3 | 0 | 2 | 10 | 20.53 | 1.90 |
4 | 0 | 3 | 15 | 15.90 | 1.25 |
5 | 30 | 0 | 5 | 26.59 | 2.69 |
6 | 30 | 1 | 0 | 31.32 | 2.98 |
7 | 30 | 2 | 15 | 15.93 | 1.87 |
8 | 30 | 3 | 10 | 14.54 | 1.83 |
9 | 70 | 0 | 10 | 18.08 | 1.98 |
10 | 70 | 1 | 15 | 12.17 | 1.53 |
11 | 70 | 2 | 0 | 28.86 | 2.73 |
12 | 70 | 3 | 5 | 20.81 | 2.58 |
13 | 100 | 0 | 15 | 16.65 | 1.54 |
14 | 100 | 1 | 10 | 20.98 | 2.01 |
15 | 100 | 2 | 5 | 21.80 | 2.12 |
16 | 100 | 3 | 0 | 23.68 | 2.58 |
Number | Recycled Aggregates (A)/% | Straw (B)/% | Glazed Hollow Beads (C)/% | Dry Density (kg/m3) | |
---|---|---|---|---|---|
1 | 0 | 0 | 0 | 1.2405 | 2337.85 |
2 | 0 | 1 | 5 | 0.8332 | 2176.64 |
3 | 0 | 2 | 10 | 0.5486 | 1944.29 |
4 | 0 | 3 | 15 | 0.4256 | 1877.59 |
5 | 30 | 0 | 5 | 0.6552 | 2064.37 |
6 | 30 | 1 | 0 | 0.9213 | 2250.75 |
7 | 30 | 2 | 15 | 0.3723 | 1734.34 |
8 | 30 | 3 | 10 | 0.4683 | 1800.81 |
9 | 70 | 0 | 10 | 0.4209 | 1945.10 |
10 | 70 | 1 | 15 | 0.3182 | 1765.41 |
11 | 70 | 2 | 0 | 0.8512 | 2200.59 |
12 | 70 | 3 | 5 | 0.5293 | 2135.47 |
13 | 100 | 0 | 15 | 0.2931 | 1725.13 |
14 | 100 | 1 | 10 | 0.3776 | 1778.66 |
15 | 100 | 2 | 5 | 0.4964 | 1898.14 |
16 | 100 | 3 | 0 | 0.6756 | 2188.95 |
Indicators | Recycled Aggregate (A) | Straw (B) | Glazed Hollow Beads (C) | |
---|---|---|---|---|
Compressive strength | i1 | 103.04 | 100.04 | 122.60 |
i2 | 88.37 | 92.35 | 97.07 | |
i3 | 79.92 | 87.12 | 74.13 | |
i4 | 83.11 | 74.94 | 60.65 | |
i1 | 25.76 | 25.01 | 30.65 | |
i2 | 22.09 | 23.09 | 24.27 | |
i3 | 19.98 | 21.78 | 18.53 | |
i4 | 20.78 | 18.73 | 15.16 | |
i | 5.78 | 6.28 | 15.49 | |
Optimization | A1B1C1 | |||
Splitting tensile strength | i1 | 9.56 | 9.79 | 11.87 |
i2 | 9.37 | 9.36 | 10.23 | |
i3 | 8.83 | 8.62 | 7.73 | |
i4 | 8.25 | 8.24 | 6.19 | |
i1 | 2.39 | 2.45 | 2.97 | |
i2 | 2.34 | 2.34 | 2.56 | |
i3 | 2.21 | 2.15 | 1.93 | |
i4 | 2.06 | 2.06 | 1.55 | |
i | 0.33 | 0.39 | 1.42 | |
Optimization | A1B1C1 |
Indicator | Recycled Aggregate (A) | Straw (B) | Glazed Hollow Beads (C) | |
---|---|---|---|---|
Thermal conductivity | i1 | 3.0479 | 2.6097 | 3.6886 |
i2 | 2.4171 | 2.4503 | 2.5141 | |
i3 | 2.1196 | 2.2685 | 1.8154 | |
i4 | 1.8427 | 2.0988 | 1.4092 | |
i1 | 0.7620 | 0.6524 | 0.9222 | |
i2 | 0.6043 | 0.6126 | 0.6285 | |
i3 | 0.5299 | 0.5671 | 0.4539 | |
i4 | 0.4607 | 0.5247 | 0.3523 | |
i | 0.3013 | 0.1277 | 0.5699 | |
Optimization | A4B4C4 |
Indicators | Factors | SS | df | MS | F | FCV | Sig |
---|---|---|---|---|---|---|---|
Compressive strength | Recycled aggregate (A) | 78.482 | 3 | 26.161 | 5.170 | F0.01 (3,6) = 9.78 | |
Straw (B) | 83.453 | 3 | 27.818 | 5.497 | F0.05 (3,6) = 4.76 | ||
Glazed hollow beads (C) | 554.514 | 3 | 184.838 | 36.528 | F0.1 (3,6) = 3.29 | ||
30.361 | 6 | 5.060 | F0.2 (3,6) = 2.1 | ||||
△ | 746.810 | 15 | |||||
Splitting tensile strength | Recycled aggregate (A) | 0.260 | 3 | 0.087 | 1.165 | F0.01 (3,6) = 9.78 | Δ |
Straw(B) | 0.369 | 3 | 0.123 | 1.652 | F0.05 (3,6) = 4.76 | Δ | |
Glazed hollow beads (C) | 4.824 | 3 | 1.608 | 21.595 | F0.1 (3,6) = 3.29 | ||
0.447 | 6 | 0.074 | F0.2 (3,6) = 2.1 | ||||
Δ | 5.900 | 15 |
Indicator | Factors | SS | df | MS | F | FCV | Sig |
---|---|---|---|---|---|---|---|
Thermal conductivity | Recycled aggregate (A) | 0.200 | 3 | 0.067 | 15.197 | F0.01 (3,6) = 9.78 | ** |
Straw (B) | 0.037 | 3 | 0.012 | 2.787 | F0.05 (3,6) = 4.76 | Δ | |
Glazed hollow beads (C) | 0.747 | 3 | 0.249 | 56.660 | F0.1 (3,6) = 3.29 | ** | |
e | 0.026 | 6 | 0.004 | F0.2 (3,6) = 2.1 | |||
eΔ | 1.011 | 15 |
Number | Compressive Strength (MPa) | Splitting Tensile Strength (MPa) | Thermal Conductivity | Dry Density (Kg/m3) | Total Efficiency Coefficient |
---|---|---|---|---|---|
1 | 38.73 (1.000) | 3.58 (1.000) | 1.2405 (0.236) | 2337.85 (0.738) | 0.646 |
2 | 27.87 (0.720) | 2.84 (0.793) | 0.8332 (0.352) | 2176.64 (0.793) | 0.632 |
3 | 20.53 (0.530) | 1.90 (0.530) | 0.5486 (0.534) | 1944.29 (0.887) | 0.604 |
4 | 15.90 (0.411) | 1.25 (0.349) | 0.4256 (0.689) | 1877.59 (0.919) | 0.549 |
5 | 26.59 (0.686) | 2.69 (0.753) | 0.6552 (0.447) | 2064.37 (0.836) | 0.663 |
6 | 31.32 (0.809) | 2.98 (0.833) | 0.9213 (0.318) | 2250.75 (0.766) | 0.637 |
7 | 15.93 (0.411) | 1.87 (0.521) | 0.3723 (0.787) | 1734.34 (0.995) | 0.640 |
8 | 14.54 (0.375) | 1.83 (0.512) | 0.4683 (0.626) | 1800.81 (0.958) | 0.583 |
9 | 18.08 (0.467) | 1.98 (0.554) | 0.4209 (0.696) | 1945.10 (0.887) | 0.632 |
10 | 12.17 (0.314) | 1.53 (0.429) | 0.3182 (0.921) | 1765.41 (0.977) | 0.590 |
11 | 28.86 (0.745) | 2.73 (0.764) | 0.8512 (0.344) | 2200.59 (0.784) | 0.626 |
12 | 20.81 (0.537) | 2.58 (0.722) | 0.5393 (0.554) | 2135.47 (0.808) | 0.645 |
13 | 16.65 (0.430) | 1.54 (0.430) | 0.2931 (1.000) | 1725.13 (1.000) | 0.656 |
14 | 20.98 (0.542) | 2.01 (0.563) | 0.3776 (0.776) | 1778.66 (0.970) | 0.692 |
15 | 21.80 (0.563) | 2.12 (0.592) | 0.4964 (0.590) | 1898.14 (0.909) | 0.650 |
16 | 23.68 (0.612) | 2.58 (0.721) | 0.6756 (0.434) | 2188.95 (0.788) | 0.623 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.-X.; Li, X.; Li, X.-J.; Wei, T.-B. Analysis of the Performance of Recycled Insulation Concrete and Optimal Mix Ratio Design Based on Orthogonal Testing. Materials 2023, 16, 5688. https://doi.org/10.3390/ma16165688
Deng J-X, Li X, Li X-J, Wei T-B. Analysis of the Performance of Recycled Insulation Concrete and Optimal Mix Ratio Design Based on Orthogonal Testing. Materials. 2023; 16(16):5688. https://doi.org/10.3390/ma16165688
Chicago/Turabian StyleDeng, Jun-Xi, Xiao Li, Xiao-Juan Li, and Tai-Bing Wei. 2023. "Analysis of the Performance of Recycled Insulation Concrete and Optimal Mix Ratio Design Based on Orthogonal Testing" Materials 16, no. 16: 5688. https://doi.org/10.3390/ma16165688
APA StyleDeng, J.-X., Li, X., Li, X.-J., & Wei, T.-B. (2023). Analysis of the Performance of Recycled Insulation Concrete and Optimal Mix Ratio Design Based on Orthogonal Testing. Materials, 16(16), 5688. https://doi.org/10.3390/ma16165688