Review of the State of Impurity Occurrences and Impurity Removal Technology in Phosphogypsum
Abstract
:1. Introduction
2. Composition and Occurrence State of Impurities in Phosphogypsum
2.1. Elemental Composition of Typical Phosphogypsum
2.2. Hazard and Occurrence State of Constant Impurity Components
2.2.1. Silicon Impurities
2.2.2. Phosphorus Impurity
2.3. Harm and Occurrence State of Trace Impurity Components
2.3.1. Fluorine Impurities
2.3.2. Iron Impurity
2.3.3. Aluminum Impurities
2.3.4. Carbon Impurity
3. Phosphogypsum Removal Impurity Technologies
3.1. Major Component Impurity Removal Technology
3.1.1. Silicon Impurity Removal
3.1.2. Phosphorus Impurity Removal
3.2. Microcomponent Impurity Removal Technology
3.2.1. Fluoride Impurity Removal
3.2.2. Iron Impurity Removal
3.2.3. Aluminum Impurity Removal
3.2.4. Carbon Impurity Removal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elsukova, E.Y.; Nedbaev, I.S.; Kuzmina, D.S. Monitoring of soil pollution in the area affected by the production of phosphorus fertilizers. Vestn. St. Petersburg Univ. Earth Sci. 2022, 67, 652–674. [Google Scholar] [CrossRef]
- Zhukova, A.D.; Khomyakov, D.M. Parameters of microbial respiration in soils of the impact zone of a mineral fertilizer factory. Eurasian Soil Sci. 2015, 48, 862–870. [Google Scholar] [CrossRef]
- Millan-Becerro, R.; Perez-Lopez, R.; Canovas, C.R.; Macías, F.; León, R. Phosphogypsum weathering and implications for pollutant discharge into an estuary. J. Hydrol. 2023, 617, 128943. [Google Scholar] [CrossRef]
- Millan-Becerro, R.; Macias, F.; Canovas, C.R.; Pérez-López, R.; Fuentes-López, J.M. Environmental management and potential valorization of wastes generated in passive treatments of fertilizer industry effluents. Chemosphere 2022, 295, 133876. [Google Scholar] [CrossRef] [PubMed]
- Mymrin, V.; Aibuldinov, E.K.; Avanci, M.A.; Alekseev, K.; Argenda, M.A.; Carvalho, K.Q.; Erbs, A.; Catai, R.E. Material cycle realization by hazardous phosphogypsum waste, ferrous slag, and lime production waste application to produce sustainable construction materials. J. Mater. Cycles Waste Manag. 2021, 23, 591–603. [Google Scholar] [CrossRef]
- Flores-Ales, V.; Rodriguez-Romero, M.; Romero-Hermida, I.; Esquivias-Fedriani, L.M. Characterization of mixed mortars with lime obtained from recycled phosphogypsum. Bol. Soc. Esp. Ceram. Y Vidr. 2020, 59, 129–136. [Google Scholar]
- Zhou, J.; Yu, D.X.; Shu, Z.; Li, T.T.; Chen, Y.; Wang, Y.X. A novel Two-step Hydration Process of preparing cement-free non-fired bricks from waste phosphogypsum. Constr. Build. Mater. 2014, 73, 222–228. [Google Scholar] [CrossRef]
- Garg, M.; Minocha, A.K.; Jain, N. Environment hazard mitigation of waste gypsum and chalk: Use in construction materials. Constr. Build. Mater. 2011, 25, 944–949. [Google Scholar] [CrossRef]
- Sun, T.; Li, W.M.; Xu, F.; Yu, Z.C.; Wang, Z.Y.; Quyang, G.S.; Xu, D. A new eco-friendly concrete made of high content phosphogypsum based aggregates and binder: Mechanical properties and environmental benefits. J. Clean. Prod. 2023, 400, 136555. [Google Scholar] [CrossRef]
- Cao, J.Z.; Wang, Z.Y.; Ma, X.H.; Yang, X.D.; Zhang, X.H.; Pan, H.Y.; Wu, J.; Xu, M.; Lin, L.L.; Zhang, Y.Z.; et al. Promoting coordinative development of phosphogypsum resources reuse through a novel integrated approach: A case study from China. J. Clean. Prod. 2022, 374, 134078. [Google Scholar] [CrossRef]
- Kovalev, Y.N.; Yaglov, V.N.; Chistova, T.A.; Girinsky, V.V. Application of Phosphogypsum in Road Construction. Sci. Technol. 2021, 20, 493–498. [Google Scholar] [CrossRef]
- Miekos, E.; Zielinski, M.; Kolodziejczyk, K.; Jaksender, M. Application of industrial and biopolymers waste to stabilise the subsoil of road surfaces. Road Mater. Pavement Des. 2019, 20, 440–453. [Google Scholar] [CrossRef]
- Wang, C.Q.; Chen, S.; Huang, D.M.; Huang, Q.C.; Li, X.Q.; Shui, Z.H. Safe environmentally friendly reuse of red mud modified phosphogypsum composite cementitious material. Constr. Build. Mater. 2023, 368, 130348. [Google Scholar] [CrossRef]
- Zmemla, R.; Benjdidia, M.; Naifar, I.; Sadik, C.; Elleuch, B.; Sdiri, A. A phosphogypsum-based road material with enhanced mechanical properties for sustainable environmental remediation. Environ. Prog. Sustain. Energy 2022, 41, e13732. [Google Scholar] [CrossRef]
- Li, X.B.; Zhou, Y.A.; Shi, Y.; Zhu, Q.Q. Fluoride immobilization and release in cemented PG backfill and its influence on the environment. Sci. Total Environ. 2023, 869, 161548. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Diaz, I.; Gazquez, M.J.; Bolivar, J.P.; López, F.A. Characterization and Valorization of Norm Wastes for Construction Materials. In Management Hazardous Waste Environment; Books on Demand: Norderstedt, Germany, 2016; pp. 13–37. [Google Scholar]
- Bensalah, H.; Bekheet, M.F.; Younssi, S.A.; Ouammou, M.; Gurlo, A. Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste. J. Environ. Chem. Eng. 2018, 6, 1347–1352. [Google Scholar] [CrossRef]
- Mousa, S.M.; Ammar, N.S.; Ibrahim, H.A. Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste. J. Saudi Chem. Soc. 2016, 20, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Mousa, S.; Hanna, A. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste. Mater. Res. Bull. 2013, 48, 823–828. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Luo, H.M.; Zheng, L.W.; Wang, K.J.; Li, H.X.; Wang, Y.; Feng, H.X. Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution. J. Hazard Mater. 2012, 241, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Li, W.X.; Huang, Y.; Wang, T.; Fang, M.X.; Li, Y. Preparation of calcium carbonate nanoparticles from waste carbide slag based on CO2 mineralization. J. Clean. Prod. 2022, 36, 132463. [Google Scholar] [CrossRef]
- Phuong, D.N.; Chi, N.K.; Minh, T.L.; Luat, H.H.; Truyen, C.Q.; Lam, T.D. Preparation of CaCO3 nano and microparticles from phosphogypsum of Dinh Vu DAP plant, Viet Nam. Vietnam J. Chem. 2021, 59, 440–445. [Google Scholar]
- Dong, F.Q.; He, H.; He, P.; Yang, W.; Xu, L.H. The Optimal Conditions of Preparation of Phosphogypsum-Based Calcium Sulfate Hemihydrate Whiskers by Hydrothermal Method Using Phosphogypsum. In Proceedings of the 11th International Congress for Applied Mineralogy; Dong, F., Ed.; Springer Geochemistry/Mineralogy. Springer: Cham, Switzerland, 2015; pp. 81–89. [Google Scholar]
- Li, Q.B.; Liu, H.; Nie, C.C.; Xie, G.M.; Che, Z.M.; Zhu, D.H.; Guo, L.; Xiang, Y.; Shi, W. PMMA-Grafted Calcium Sulfate Whiskers for Applications as Fillers in PVC. Polymers 2022, 14, 4199. [Google Scholar] [CrossRef]
- Liu, H.T.; Jin, X.; Chen, L.; Chang, X.C.; Li, J.; An, Y.Z.; Liu, J.; Pang, C.X.; Gao, Y.J. Effects of phosphogypsum whiskers modification with calcium stearate and their impacts on properties of bleached softwood paper sheets. Tappi J. 2021, 20, 567–578. [Google Scholar] [CrossRef]
- Li, B.X.; Li, L.; Chen, X.; Ma, Y.; Zhou, M.K. Modification of phosphogypsum using circulating fluidized bed fly ash and carbide slag for use as cement retarder. Constr. Build. Mater. 2022, 338, 127630. [Google Scholar] [CrossRef]
- Shen, W.; Gan, G.J.; Dong, R.; Chen, H.; Tan, Y.; Zhou, M.K. Utilization of solidified phosphogypsum as Portland cement retarder. J. Mater. Cycles Waste Manag. 2012, 14, 228–233. [Google Scholar] [CrossRef]
- van der Merwe, E.M.; Strydom, C.A. Purification of South African phosphogypsum for use as Portland cement retarder by a combined thermal and sulphuric acid treatment method. S. Afr. J. Sci. 2004, 100, 411–414. [Google Scholar]
- Ke, B.L.; Zhang, Q.; Li, X.H.; Shen, Z.H. Adsorption and solidification of cadmium by calcium sulfate dihydrate (gypsum) in an aqueous environment: A dispersion-corrected DFT and ab initio molecular dynamics study. Phys. Chem. Chem. Phys. 2022, 24, 9521–9533. [Google Scholar]
- Bchitou, R. Optimization and modeling of Pb (II) adsorption from aqueous solution onto phosphogypsum by application of response surface methodology. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196, 521–529. [Google Scholar]
- Bchitou, R. Adsorptivity and selectivity of heavy metals Cd (II), Cu (II), and Zn (II) toward phosphogypsum. Desalin Water Treat 2020, 197, 291–299. [Google Scholar]
- Syczewski, M.D.; Borkowski, A.; Gasainski, A.; Raczko, J.; Mordak, K.; Gradziel, I.; Krzesicka, M.; Kałaska, M.; Siuda, R. Phosphogypsum and clay mineral/phosphogypsum ceramic composites as useful adsorbents for uranium uptake. Appl. Geochem. 2020, 123, 104793. [Google Scholar] [CrossRef]
- Zhao, L.N.; Zhang, Q.; Li, X.B.; Li, W.; Liu, T.Z.; Wu, P.; Xu, Q.Y.; Liu, S.R. Adsorption of Cu (II) by phosphogypsum modified with sodium dodecyl benzene sulfonate. Environ. Pollut. 2020, 387, 119032. [Google Scholar] [CrossRef]
- Li, L.; Liao, L.; Wang, B.; Li, W.; Liu, T.; Wu, P.; Xu, Q.; Liu, S. Effective Sb(V) removal from aqueous solution using phosphogypsum-modified biochar. Environ. Pollut. 2022, 301, 119032. [Google Scholar] [CrossRef]
- Carvalho, M.; Nascente, A.S. Application of lime, phosphogypsum and fertilization rates affect soil fertility and common bean development in no-tillage system in a Cerrado Oxisol. ACTA Sci. Agron. 2018, 40, 39322. [Google Scholar] [CrossRef]
- James, J.; Pandian, P.K. Plasticity, Swell-Shrink, and Microstructure of Phosphogypsum Admixed Lime Stabilized Expansive Soil. Adv. Civ. Eng. 2016, 2016, 9798456. [Google Scholar] [CrossRef]
- Costa, E.; Lopes, G.; Carvalho, G.S.; Penha, H.G.V.; Curi, N.; Guilherme, L.R.G. Phytoremediation of Arsenic-Contaminated Soils Amended with Red Mud Combined with Phosphogypsum. Water Air Soil Pollut. 2021, 232, 417. [Google Scholar] [CrossRef]
- Konarbaeva, G.A. Fluorine in the crusty solonetzes of western Siberia and the impact of phosphogypsum on its content. Eurasian Soil Sci. 1997, 30, 977–981. [Google Scholar]
- Oszako, T.; Paslawski, T.; Szulc, W.; Rutkowska, B.; Rutkiewicz, A.; Kukina, O.; Bakier, S.; Borowik, P. Short-Term Growth Response of Young Pine (Pinus silvestris) Seedlings to the Different Types of Soil Media Mixture with Phosphogypsum Formulations under Poland Forest Environmental Conditions. Forests 2023, 14, 518. [Google Scholar] [CrossRef]
- Borges, W.L.B.; Juliano, P.H.G.; de Souza, I.M.D.; Rodrigues, L.N.F.; Hipólito, J.Z.; Andreotti, M. New Methodologies for the Surface Application of Limestone and Gypsum in Different Crop Systems. Sustainability 2022, 14, 8926. [Google Scholar] [CrossRef]
- Yu, X.L.; Li, B.G. Release mechanism of a novel slow-release nitrogen fertilizer. Particuology 2019, 45, 124–130. [Google Scholar] [CrossRef]
- Deshmukh, S.C.; Tiwari, S.C. Efficiency of slow-release nitrogen fertilizers in rice (Oryza sativa) on partially reclaimed sodic Vertisols. Indian J. Agron. 1996, 41, 586–590. [Google Scholar]
- Peng, X.P.; Zhu, J.B.; Guo, T.; Wu, X.P.; Sun, H.Q. Technology Improvement of Production of Sulfuric Acid Integrated with Cement from Phosphogypsum; Tianjin Cement Industry Design and Research Institute Co., Ltd.: Tianjin, China, 2015; Volume 68, pp. 66–71. [Google Scholar]
- Shi, T.; Wan, T.M.; Zhang, Z.Y.; Yang, X.S.; Yang, L.; Zhong, B.H.; Kong, X.J.; Wang, X.L. Effect of SiO2 on the melting characteristics of reaction between phosphogypsum and calcium sulfide. J. Therm. Anal. Calorim. 2016, 123, 1601–1609. [Google Scholar] [CrossRef]
- Liu, Y.T.; Yang, Z.L.; Luo, H. Experimental Investigation of Eco-Friendly Anhydrous Calcium Sulfate Whisker and Waste Cooking Oil Compound Modified Asphalt Mixture. Materials 2023, 16, 2409. [Google Scholar] [CrossRef]
- Wan, J.M.; Han, T.; Li, K.F.; Shu, S.X. Effect of Phosphogypsum Based Filler on the Performance of Asphalt Mortar and Mixture. Materials 2023, 16, 2486. [Google Scholar] [CrossRef]
- Liu, G.; Guan, B.; Liang, Y.S.; Xing, H.Y.; Huang, A.; Qin, J.R. Preparation of phosphogypsum (PG) based artificial aggregate and its application in the asphalt mixture. Constr. Build. Mater. 2022, 356, 129218. [Google Scholar] [CrossRef]
- Cuadri, A.A.; Perez-Moreno, S.; Altamar, C.L.; Navarro, F.J.; Bolívar, J.P. Phosphogypsum as additive for foamed bitumen manufacturing used in asphalt paving. J. Clean. Prod. 2021, 283, 124661. [Google Scholar] [CrossRef]
- Gong, S.; Li, X.L.; Song, F.X.; Lu, D.H.; Chen, Q.L. Preparation and Application in HDPE of Nano-CaSO4 from Phosphogypsum. ACS Sustain. Chem. Eng. 2020, 8, 4511–4520. [Google Scholar] [CrossRef]
- Xu, L.; Fang, K.N.; Bi, Y.X.; Yang, M.; Chen, Q.L. Preparation of anhydrous micron CaSO4 with different morphologies from phosphogypsum and its reinforcing in polyvinyl chloride. Constr. Build. Mater. 2023, 365, 130126. [Google Scholar] [CrossRef]
- Liu, H.; Nie, C.C.; Li, H.P.; Xie, G.M.; Cao, J.X. Hydrophobically modified phosphogypsum and its application in polypropylene composites. Constr. Build. Mater. 2022, 347, 128500. [Google Scholar] [CrossRef]
- Ma, Y.; Sheng, J.J.; Li, T.Y.; Yang, C.; Xiao, Q.F.; Yang, R.L. Study on the optimal conditions of ultrasonic strengthening phosphogypsum storage and solidification of CO2. Sustain. Chem. Pharm. 2023, 33, 101091. [Google Scholar] [CrossRef]
- Kang, C.U.; Ji, S.W.; Jo, H. Recycling of Industrial Waste Gypsum Using Mineral Carbonation. Sustainability 2022, 14, 4436. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, F.Z.; Ma, L.P.; Ming, P.; Yang, J.; Wei, Y. An efficient methodology to use hydrolysate of phosphogypsum decomposition products for CO2 mineral sequestration and calcium carbonate production. J. Clean. Prod. 2020, 25, 120826. [Google Scholar] [CrossRef]
- Msila, X.; Billing, D.G.; Barnard, W. Capture and storage of CO2 into waste phosphogypsum: The modified Merseburg process. Clean Technol. Environ. Policy 2016, 18, 2709–2715. [Google Scholar] [CrossRef]
- Masmoudi-Soussi, A.; Hammas-Nasri, I.; Horchani-Naifer, K.; Férid, M. Study of Rare Earths Leaching After Hydrothermal Conversion of Phosphogypsum. Chem. Afr. 2019, 2, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Podbiera-Matysik, K.; Gorazda, K.; Wzorek, Z.; Akajev, O. Possibility of utilizing waste phosphogypsum in the conversion of calcium sulfate (VI) to calcium carbonate and recovery of rare earth elements from the process. Przem. Chem. 2016, 95, 1740–1743. [Google Scholar]
- Bruckner, L.; Elwert, T.; Schirmer, T. Extraction of Rare Earth Elements from Phospho-Gypsum: Concentrate Digestion, Leaching, and Purification. Metals 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Valancius, Z.; Vaickelioniene, R.; Vaickelionis, G.; Makčinskas, P. Use of an industrial by-product phosphogypsum in the production of white textured paints. J. Clean. Prod. 2022, 380, 134888. [Google Scholar] [CrossRef]
- Bing, L.; Shu, J.C.; Chen, M.J.; Zeng, X.F.; Liu, R.L.; Yang, Y. A new basic burning raw material for simultaneous stabilization/solidification of PO43--P and F- in phosphogypsum. Ecotoxicol. Environ. Saf. 2023, 252, 114582. [Google Scholar] [CrossRef]
- El Rafie, S.; El Ghytany, H.; Aila, R.A.; Gaber, M. Treatment and Purification of Phosphogypsum. Egypt J. Chem. 2019, 62, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.H.; Jin, C.Y.; Xie, R.S.; Qu, G.F.; Chen, B.J.; Qin, J.; Li, H.L.; Kuang, L.R. Extraction and transformation of elements in phosphogypsum by electrokinetics. J. Clean. Prod. 2023, 385, 135688. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Zheng, G.C.; Liu, Z.H.; Liu, R.L.; Tao, C.Y. Multi-stage precipitation for the eco-friendly treatment of phosphogypsum leachates using hybrid alkaline reagents. J. Water Process Eng. 2023, 53, 103626. [Google Scholar] [CrossRef]
- Deng, Q.L.; Luo, Q.; Li, M.; Tu, J.H.; Guo, L.Q.; Wu, L.X.; Zhang, T.; Shi, L.J.; Zhang, H.; Dong, F.Q. Highly Efficient Removal of Congo Red from Aqueous Solution by Lime-Preconditioned Phosphogypsum. ChemistrySelect 2022, 7, e202200139. [Google Scholar] [CrossRef]
- Guan, Q.J.; Sui, Y.; Yu, W.J.; Bu, Y.J.; Zeng, C.X.; Liu, C.F.; Zhang, Z.Y.; Gao, Z.Y.; Chi, R.A. Deep removal of phosphorus and synchronous preparation of high-strength gypsum from phosphogypsum by crystal modification in NaCl-HCl solutions. Sep. Purif. Technol. 2022, 298, 121592. [Google Scholar] [CrossRef]
- Li, J.; Peng, X.Q.; Zheng, J.Y.; Mao, M.L.; Sun, X.; Wang, J.X.; Li, X.Q.; Chai, X.L.; Lin, Z.; Liu, W.Z. Simultaneous removal of phosphorus and organic contaminants from phosphogypsum using hydrothermal method for gypsum resource regeneration. J. Environ. Chem. Eng. 2022, 10, 108441. [Google Scholar] [CrossRef]
- Luo, Z.; An, Z.B.; Zhang, H.; Hu, Y.; Cao, H.; Xue, J. A Precipitation-Adsorption Technique for the Removal of Fluoride and Phosphate in Phosphogypsum: An Economical and Green Method. Min. Metall. Explor. 2022, 39, 2229–2235. [Google Scholar] [CrossRef]
- Lv, X.F.; Xiang, L. The Generation Process, Impurity Removal and High-Value Utilization of Phosphogypsum Material. Nanomaterials 2022, 12, 3021. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.C.; Qiu, J.P.; Song, Y.Y.; Miao, Y.Y.; Gu, X.W. Synergistic removal of phosphorus and fluorine impurities in phosphogypsum by enzyme-induced modified microbially induced carbonate precipitation method. J. Environ. Manag. 2022, 324, 116300. [Google Scholar] [CrossRef]
- Cai, Q.; Jiang, J.; Ma, B.; Shao, Z.Y.; Hu, Y.Y.; Qian, B.B.; Wang, L.M. Efficient removal of phosphate impurities in waste phosphogypsum for the production of cement. Sci. Total Environ. 2021, 780, 146600. [Google Scholar] [CrossRef]
- Sun, T.; Hu, T.; Wang, G.M.; Shui, Z.H.; Ge, K.Y.; Dai, Q.T.; Xie, Y.F. Influence of Clinker and SCMs on Soluble Chemicals and Expansion of Phosphogypsum-Based Cementitious Materials. J. Test. Eval. 2020, 48, 1950–1961. [Google Scholar] [CrossRef]
- Ennaciri, Y.; Zdah, I.; El Alaoui-Belghiti, H.; Bettach, M. Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry. Chem. Eng. Commun. 2020, 207, 382–392. [Google Scholar] [CrossRef]
- Zou, X.H.; Wu, L.X.; Deng, Q.L.; Liao, H.W.; Shi, L.J.; Tan, H.B.; Zhang, H.; Zhang, T.; Dong, F.Q. Phosphogypsum Whitened by Hydrogen Peroxide via Oxidation. Non-Met. Mines 2022, 45, 74–78. [Google Scholar]
- Tang, M.Z.; Wang, Z.Y.; Wang, Y.S.; Bao, W.J.; Yang, G.; Sun, Y. Characterization of the Impurity Phases in Phosphogypsum by the EBSD-XPS Method. Spectrosc. Spect. Anal. 2022, 42, 136–140. [Google Scholar]
- Wei, J.B.; Ji, Y.H.; Chen, X.Q.; Wang, Y.; Fan, C.Y.; Pan, Z.Q. Study on Purification and Impurity Removal of Phosphogypsum by Flotation. Non-Met. Mines 2022, 45, 57–60. [Google Scholar]
- Liang, H.C.; Tan, M.Y.; Li, C.Q. Research progress of phosphogypsum decolorization and whitening technology. Inf. Rec. Mater. 2022, 23, 43–45. [Google Scholar]
- Yang, Y. Pilot study on acid hydrolysis and purification of phosphogypsum. Phosphate Compd. Fertil. 2022, 37, 28–30, 33. [Google Scholar]
- Zhang, W.; Tian, C.T.; Weng, X.Q.; Li, H.Q.; He, D.S.; Luo, H.H. Research on the Process Mineralogy of Phosphogypsum Using Mineral Liberation Analysis System. Multipurp. Util. Miner. Resour. 2022, 1, 205–210. [Google Scholar]
- Gu, Q.S.; Lin, X.H.; Zhao, S.H.; Yuan, Y.J. Effect of different pretreatment processes on properties of phosphogypsum. Inorg. Chem. Ind. 2022, 54, 17–23. [Google Scholar]
- Zhang, L.Z.; Zhang, Y.X.; Wu, Z.Y.; Zhang, X.F.; Tan, X.M. Experimental study on removal of water-soluble phosphorus and water-soluble fluorine from phosphogypsum. Inorg. Chem. Ind. 2022, 54, 40–45. [Google Scholar]
- Li, J.L.; Guo, Y.J.; Li, H.B.; Chen, C.Y.; Fan, P.Q. Research progress on impurity removal and whitening of phosphogypsum. Phosphate Compd. Fertil. 2022, 37, 30–33. [Google Scholar]
- Zhou, M.Q.; Tao, X.; Liao, X.; Lv, J.S. Production and Discharge of Phosphogypsum and Research Progress on its Resource Utilization. Yunnan Chem. Technol. 2022, 49, 4–8. [Google Scholar]
- Du, M.X.; Wang, J.M.; Dong, F.Q.; Wang, Z.J.; Yang, F.H.; Fu, K.B.; Li, Y. Technological Mineralogical Characteristics of Phosphogypsum. Non-Met. Mines 2020, 43, 52–55. [Google Scholar]
- Li, Z.; Chen, J.; Zhang, Q.; Shen, Z.H. A Study on the removal of phosphorus and fluorine impurities from phosphogypsum. ACTA Mineral. Sin. 2020, 40, 639–646. [Google Scholar]
- Wang, J.M.; Dong, F.Q.; Wang, Z.J.; Yang, F.H.; Yao, Y.; Fu, K.B.; Wang, Z. Study on New Technology of Phosphogypsum Whitening and Purification by Flotation. Non-Met. Mines 2019, 42, 1–5. [Google Scholar]
- Li, X.; Zhu, G.Y.; Gong, X.K.; Li, S.P.; Xu, W.; Li, H.Q. Occurrence of the Impurities in Phosphorus Rock and the Research of Acidolysis Process. Spectrosc. Spectr. Anal. 2019, 39, 1288–1293. [Google Scholar]
- Li, G.P. Discussion on technical difficulties of comprehensive utilization of phosphogypsum. Sulphuric Acid Ind. 2019, 10, 20–21. [Google Scholar]
- Zhao, H.T.; Bao, W.J.; Sun, Z.H.; Li, S.G.; Li, H.Q.; Lin, W.G. Deep removal of impurities from phosphogypsum. Chem. Ind. Eng. Prog. 2017, 36, 1240–1246. [Google Scholar]
- Wu, M.W.; Liu, Z.Y.; Quan, S.C. Study on the Sieving Method and Parching Procedure Pretreatment Technology of Phosphogypsum. Sci. Technol. Eng. 2016, 16, 254–258. [Google Scholar]
- Zhao, H.T.; Li, H.Q.; Bao, W.J.; Wang, C.Y.; Li, S.G.; Lin, W.G. Spectral Analysis of Trace Fluorine Phase in Phosphogypsum. Spectrosc. Spectr. Anal. 2015, 35, 2333–2338. [Google Scholar]
- Shi, M.; Yang, B.J.; Li, L.; Wang, B.N.; Wang, X.L. Study of technological conditions of decoloring and whitening of phosphogypsum. J. Hefei Univ. Technol. 2013, 36, 212–216. [Google Scholar]
- Pang, Y.; Yang, L.; Yang, M.; Cao, J.X. Study on Existing Form and Distribution of the Impurities in Phosphogypsum. J. Guizhou Univ. (Nat. Sci.) 2009, 26, 95–99. [Google Scholar]
- Peng, J.H.; Zhang, J.X.; Wan, T.Z.; Tang, L.; Chen, M.F. Study on the Pretreatment Technology of Phosphogypsum. J. Chongqing Jianzhu Univ. 2000, 22, 74–78, 94. [Google Scholar]
- Ma, X.M. Process Introduction for Phosphogypsum Purification and Gypsum Calcination. S P BMH Relat. Eng. 2003, 5, 17–19. [Google Scholar]
- Huang, Z.H.; Luo, K.B.; Li, H.P. Types of Impurity in Phosphogypsum and the Method of Removing Impurity Research Review. Bull. Chin. Ceram. Soc. 2016, 35, 1504–1508. [Google Scholar]
- Xu, A.Y.; Li, H.P.; Luo, K.B. An overview of the study on the impurities and the method of eliminating the impurity in the phosphogypsum. Sci. Technol. Chem. Ind. 2010, 18, 59–64. [Google Scholar]
- Zhu, P.C.; Wang, G.D.; Ceng, B. Experimental Study on Phosphogypsum Desilication by Flotation. Multipurp. Util. Miner. Resour. 2014, 6, 39–42. [Google Scholar]
- Li, J.M.; Wang, G.X.; Zhou, X.Y. Technological selection and key equipment selection of phosphogypsum pretreatment. Phosphate Compd. Fertil. 2019, 34, 23–25. [Google Scholar]
- Liu, Y.; Lu, L.M.; Zhang, Z.Y.; Li, Z.R.; Tang, J.W.; Li, L.; Hua, Q.X.; Wang, B.M. Characteristic of major impurity of phosphogypsum and its effect on compressive strength. Phosphate Compd. Fertil. 2019, 34, 20–22. [Google Scholar]
- Li, X.B.; Zhang, Q. Dehydration behaviour and impurity change of phosphogypsum during calcination. Constr. Build. Mater. 2021, 311, 125328. [Google Scholar] [CrossRef]
- Huang, Y.B.; Qian, J.S.; Liu, C.Z.; Liu, N.; Shen, Y.; Ma, Y.; Sun, H.Q.; Fan, Y.R. Influence of phosphorus impurities on the performances of calcium sulfoaluminate cement. Constr. Build. Mater. 2017, 149, 37–44. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Kwon, K.D.; Wang, S.F.; Ren, C.; Li, W. Molecular speciation of phosphorus in phosphogypsum waste by solid-state nuclear magnetic resonance spectroscopy. Sci. Total Environ. 2019, 696, 133958. [Google Scholar] [CrossRef]
- Li, M.; Peng, J.H.; Zhang, H.; Zhang, J.X.; Liu, X.F. Influence of P2O5 in Crystal Lattice on Gypsum Properties and Its Mechanisms. J. Sichuan Univ. (Eng. Sci. Ed.) 2012, 44, 200–204. [Google Scholar]
- Zhuo, R.H. Characteristics and development and application of phosphogypsum. Shandong Build. Mater. 2005, 26, 46–49. [Google Scholar]
- Ding, M.; Li, J.X.; Li, B.B. Effects of impurities in phosphogypsum and pre-treatment on properties of α hemihydrates. Chin. J. Environ. Eng. 2014, 8, 4017–4021. [Google Scholar]
- Jia, R.; Fan, Y.; Wang, Q.; Xue, J. Role of NaF on the performances of beta-hemihydrate gypsum plaster. J. Build. Eng. 2022, 55, 104725. [Google Scholar] [CrossRef]
- Li, H.; Guo, X.D.; Zhong, J.; Zhang, H. Research status of phosphogypsum impurities and purification. Phosphate Compd. Fertil. 2022, 37, 22–26. [Google Scholar]
- Peng, J.H.; Zhang, J.X.; Peng, Z.H.; Wan, T.Z. Study on the Grading Microstructure and Property of Phosphogypsum. J. Wuhan Univ. Technol. 2001, 23, 6–11. [Google Scholar]
- Li, H.; Zhang, H. Research status of phosphogypsum whitening and purification technology. Phosphate Compd. Fertil. 2022, 37, 31–34. [Google Scholar]
- Wang, W.; Peng, W.J.; Tian, J.X.; Miao, Y.H.; Cao, Y.J. Study on Removal Impurity and Whitening of Phosphogypsum via Calcination and Acid Leaching. Multipurp. Util. Miner. Resour. 2023, 1–9. [Google Scholar]
- Wang, X.S. Identification and Removal of Coloring Substances in Phosphogypsum; Hefei University of Technology: Hefei, China, 2021. [Google Scholar]
- Peng, J.H.; Wan, T.Z.; Tang, L.; Zhang, J.X.; Chen, M.F. Composition, morphology and distribution of impurities in phosphogypsum and their effects on properties. China Build. Mater. Sci. Technol. 2000, 6, 31–35. [Google Scholar]
- Tan, M.Y.; Huang, P.; Zhang, Y.; Fan, C.H.; Yu, N.S. Application research of hydrocyclone in pretreatment of phosphogypsum. Phosphate Compd. Fertil. 2018, 33, 42–43. [Google Scholar]
- Zhang, H.; Chai, W.C.; Cao, Y.J. Flotation separation of quartz from gypsum using benzyl quaternary ammonium salt as collector. Appl. Surf. Sci. 2022, 576, 151834. [Google Scholar] [CrossRef]
- Li, B.; Bao, W.J.; Zheng, Y.W.; Zheng, K.Y.; Tan, W. Pretreatment technology for phosphogypsum purification. Phosphate Compd. Fertil. 2018, 33, 28–31. [Google Scholar]
- Zou, K.; Xiao, J.H.; Lu, T.; Gao, D.Q.; Zhong, N.L. New Technology for Separation and Purification of Phosphogypsum by Pretreatment-Flotation. Non-Met. Mines 2022, 45, 70–73+79. [Google Scholar]
- Guo, Y.J.; Li, J.L.; Fan, P.Q.; Li, H.B.; Chen, C.Y.; Du, L.P.; Xu, S. Experimental Study on a New Process of Classification Flotation Desilication of Phosphogypsum in Yunnan. Non-Met. Mines 2022, 45, 53–56. [Google Scholar]
- Qi, M.Y.; Peng, W.J.; Wang, W.; Cao, Y.J.; Fan, G.X.; Huang, Y.K. Simple and efficient method for purification and recovery of gypsum from phosphogypsum: Reverse-direct flotation and mechanism. J. Mol. Liq. 2023, 371, 121111. [Google Scholar] [CrossRef]
- Zeng, M.; Ruan, Y.; Chen, J.; Wang, C.Y.; Zhang, B.; Zhou, Z.J. Effects Comparison of Different Pretreatment Methods to Phosphogypsum. Build. Mater. World 2011, 32, 18–21. [Google Scholar]
- Fang, G.T.; Ao, X.Q.; Liu, J.; Chen, Q.L.; Cao, Y. Effects of Additives on Impurities and Whiteness of Phosphogypsum during Calcining. Non-Met. Mines 2019, 42, 10–12. [Google Scholar]
No. | Main Content/% | Constant Impurity Components/% | Trace Impurity Components/% | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
CaO | SO3 | SiO2 | P2O5 | F | Fe2O3 | Al2O3 | C | ||
1 | 41.29 | 49.77 | 5.99 | 0.94 | 0.86 | 0.13 | 0.67 | 0.04 | Zou et al. [73] |
2 | 40.73 | 52.2 | 2.54 | 2.39 | 0.93 | 0.21 | 0.5 | Tang et al. [74] | |
3 | 34.8 | 53.79 | 7.84 | 0.97 | 0.68 | 0.9 | Wei et al. [75] | ||
4 | 32.93 | 42.4 | 4.26 | 1.03 | 0.5 | 0.47 | 0.25 | 0.24 | Liang et al. [76] |
5 | 31.32 | 44.2 | 2.39 | 1.36 | 0.23 | 0.28 | 0.2 | Yang et al. [77] | |
6 | 30.99 | 45.06 | 5.43 | 0.66 | 0.25 | 0.56 | Zhang et al. [78] | ||
7 | 28.91 | 39.7 | 7.41 | 1.25 | 0.29 | 0.41 | 0.94 | Gu et al. [79] | |
8 | 28.19 | 36.42 | 12.03 | 0.92 | 0.32 | 0.14 | 0.74 | Zhang et al. [80] | |
9 | 25.8 | 35.17 | 12.92 | 0.95 | 0.15 | 0.08 | 0.03 | Li et al. [81] | |
10 | 9.84 | 1.19 | 0.54 | 0.13 | 0.28 | Zhou [82] | |||
11 | 41.31 | 49.33 | 5.03 | 1.49 | 0.58 | 1.42 | Du et al. [83] | ||
12 | 34.07 | 40.09 | 5.29 | 0.82 | 0.18 | 0.2 | 0.13 | 0.02 | Li et al. [84] |
13 | 39.47 | 49.03 | 3.68 | 1.78 | 0.06 | 1.95 | 2.59 | Wang et al. [85] | |
14 | 35.93 | 51.95 | 8.42 | 1.51 | 0.42 | 0.54 | 0.52 | Li et al. [86] | |
15 | 28.63 | 32.2 | 17.06 | 0.7 | 0.52 | 0.21 | 0.24 | Li et al. [87] | |
16 | 34.46 | 55.95 | 5.82 | 0.79 | 0.87 | 0.51 | 0.66 | Zhao et al. [88] | |
17 | 31.98 | 45.42 | 14.61 | 0.96 | 0.15 | 1.68 | 0.25 | Wu et al. [89] | |
18 | 33.64 | 56.92 | 6.3 | 0.7 | 0.91 | 0.33 | 0.64 | Zhao et al. [90] | |
19 | 34.03 | 41.7 | 7 | 0.18 | 0.39 | Shi et al. [91] | |||
20 | 32.05 | 44.32 | 5.49 | 1.75 | 0.38 | 0.33 | 0.4 | 0.12 | Pang et al. [92] |
21 | 30.34 | 43.9 | 2.11 | 1.58 | 0.24 | 0.24 | 0.31 | 0.08 | Pang et al. [92] |
22 | 31.6 | 45.9 | 3.81 | 1.75 | 0.5 | 1.22 | 0.62 | 0.12 | Peng et al. [93] |
Avr | 33.45 | 45.5 | 7.06 | 1.17 | 0.48 | 0.43 | 0.68 | 0.12 |
Impurity Phase | Occurrence Status | Remarks |
---|---|---|
SiO2 | Independent mineral | Main impurities |
Na2SiF6/K2SiF6 | Independent mineral | Slightly soluble |
Impurity Phase | Occurrence State | Remarks |
---|---|---|
Ca5(PO4)3F, Ca3(PO4)2, FePO4, AlPO4·2H2O, and Ca3(PO4)2(OH)·2H2O | Inclusion state is dominant Independent minerals take second place | Slightly soluble phosphorus |
H3PO4, H2PO4−, HPO42−, PO43− | Independent mineral or ion adsorption state | Soluble phosphorus |
CaHPO4·2H2O, NaHPO4, and CaFPO3·2H2O | Primarily isomorphic | Eutectic phosphorus |
Impurity Phase | Occurrence State | Remarks |
---|---|---|
CaF2, Na2SiF6, K2SiF6, Na3AlF6, K3AlF6, MgF2, AlF3, Ca5(PO4)3F, CaFPO3·2H2O, and other fluorophosphates | Inclusion state is dominant Isomorphism as auxiliary | Slightly soluble fluorine |
F−, NaF, KF, HF, and H2SiF6 | Mainly in ion adsorption state | Soluble fluorine |
Impurity Phase | Occurrence State | Remarks |
---|---|---|
FeS2 (yellow), FeO(OH) (yellow), Fe2O3 (reddish brown), Fe2O3·3H2O (ocher), and FeCO3 (grey white) | Inclusion state is dominant | Amorphous intergranular iron |
FePO4·2H2O (white), Fe2(SO4)3 (light yellow), FeSO4 (light green), and Fe2(SO4)3·7H2O (light yellow) | Primarily isomorphic | Eutectic iron |
Impurity Phase | Occurrence State | Remarks |
---|---|---|
Al2O3 | Independent mineral | Oxide |
Al2(SO4)3, AlPO4, AlF2.3(OH)0.7·H2O, AlF3·3H2O, Na3AlF6, and K3AlF6 | Inclusion state is dominant | Double salt |
Impurity Phase | Occurrence State | Remarks |
---|---|---|
Graphite carbon | \ | Inorganic mixed crystals |
Carbonate carbonaceous | \ | Inorganic single crystals |
Humin, humic acid, and fulvic acid | Inclusion state is dominant | Organic macromolecules |
Ethylene glycol methyl ether acetate, isothiomethane, 3-neneneba methoxy Pentane, 2-ethyl-1, 3-dioxolane, mineral processing agent, and organic flocculant | Mainly in ion adsorption state | Organic small molecules |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Lv, X.; Xiang, L. Review of the State of Impurity Occurrences and Impurity Removal Technology in Phosphogypsum. Materials 2023, 16, 5630. https://doi.org/10.3390/ma16165630
Li X, Lv X, Xiang L. Review of the State of Impurity Occurrences and Impurity Removal Technology in Phosphogypsum. Materials. 2023; 16(16):5630. https://doi.org/10.3390/ma16165630
Chicago/Turabian StyleLi, Xu, Xinfeng Lv, and Lan Xiang. 2023. "Review of the State of Impurity Occurrences and Impurity Removal Technology in Phosphogypsum" Materials 16, no. 16: 5630. https://doi.org/10.3390/ma16165630
APA StyleLi, X., Lv, X., & Xiang, L. (2023). Review of the State of Impurity Occurrences and Impurity Removal Technology in Phosphogypsum. Materials, 16(16), 5630. https://doi.org/10.3390/ma16165630