Material Classification and Aging Time Prediction of Structural Metals Using Laser-Induced Breakdown Spectroscopy Combined with Probabilistic Neural Network
Abstract
:1. Introduction
2. Experimental Setup and Samples
2.1. Experimental Setup
2.2. Samples
3. Data Analysis
3.1. Spectral Data Pre-Processing
3.2. LIBS Spectral Feature Extraction and Similarity Metric
3.3. PNN in LIBS
4. Results and Discussion
4.1. Spectra of Material Samples
4.2. Feature Data Selection
4.3. Optimization of PNN Structure
4.4. Research on the Physical Mechanism of Aging
5. Summary and Prospective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials 2018, 11, 840. [Google Scholar] [CrossRef] [Green Version]
- Lesiuk, G.; Smolnicki, M.; Rozumek, D.; Krechkovska, H.; Student, O.; Correia, J.; Mech, R.; De Jesus, A. Study of the Fatigue Crack Growth in Long-Term Operated Mild Steel under Mixed-Mode (I + II, I + III) Loading Conditions. Materials 2020, 13, 160. [Google Scholar] [CrossRef] [Green Version]
- Zykova, A.P.; Tarasov, S.Y.; Chumaevskiy, A.V.; Kolubaev, E.A. A Review of Friction Stir Processing of Structural Metallic Materials: Process, Properties, and Methods. Metals 2020, 10, 772. [Google Scholar] [CrossRef]
- Qiu, Y.; Wu, J.; Li, X.; Liu, T.; Xue, F.; Yang, Z.; Zhang, Z.; Yu, H. Parametric Study of Fiber-Optic Laser-Induced Breakdown Spectroscopy for Elemental Analysis of Z3CN20-09M Steel from Nuclear Power Plants. Spectrochim. Acta Part B At. Spectrosc. 2018, 149, 48–56. [Google Scholar] [CrossRef]
- Williams, J.C.; Boyer, R.R. Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components. Metals 2020, 10, 705. [Google Scholar] [CrossRef]
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Saleh, B.; Jiang, J.; Fathi, R.; Al-hababi, T.; Xu, Q.; Wang, L.; Song, D.; Ma, A. 30 Years of Functionally Graded Materials: An Overview of Manufacturing Methods, Applications and Future Challenges. Compos. Part B Eng. 2020, 201, 108376. [Google Scholar] [CrossRef]
- Fournier, B.; Maxime, S.; Barcelo, F.; Rauch, E.; Renault-Laborne, A.; Cozzika, T.; Dupuy, L.; Pineau, A. Creep-Fatigue Interactions in a 9 Pct Cr1 Pct Mo Martensitic Steel: Part II. Microstructural Evolutions. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2009, 40, 330–341. [Google Scholar] [CrossRef]
- China N. D. A. R. Power Plant Metallography Inspection and Assessment Guideline; China Electric Power Press: Beijing, China, 2004. [Google Scholar]
- Guo, Y.B.; Liu, C.R. Mechanical Properties of Hardened AISI 52100 Steel in Hard Machining Processes. J. Manuf. Sci. Eng. 2002, 124, 1–9. [Google Scholar] [CrossRef]
- Król, M.; Tański, T.; Snopiński, P.; Tomiczek, B. Structure and Properties of Aluminium–Magnesium Casting Alloys after Heat Treatment. J. Therm. Anal. Calorim. 2017, 127, 299–308. [Google Scholar] [CrossRef]
- Cremers, D.A.; Radziemski, L.J. Laser Plasmas for Chemical Analysis. In Laser Spectroscopy and Its Applications; CRC Press: Boca Raton, FL, USA, 2017; pp. 351–415. [Google Scholar]
- Noll, R.; Fricke-Begemann, C.; Brunk, M.; Connemann, S.; Meinhardt, C.; Scharun, M.; Sturm, V.; Makowe, J.; Gehlen, C. Laser-Induced Breakdown Spectroscopy Expands into Industrial Applications. Spectrochim. Acta Part B At. Spectrosc. 2014, 93, 41–51. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, R.; Awasthi, S.; Singh, V.; Rai, A.K. Laser Induced Breakdown Spectroscopy: A Rapid Tool for the Identification and Quantification of Minerals in Cucurbit Seeds. Food Chem. 2017, 221, 1778–1783. [Google Scholar] [CrossRef]
- Zhang, D.C.; Hu, Z.Q.; Su, Y.B.; Hai, B.; Zhu, X.L.; Zhu, J.F.; Ma, X. Simple Method for Liquid Analysis by Laser-Induced Breakdown Spectroscopy (LIBS). Opt. Express 2018, 26, 18794–18802. [Google Scholar] [CrossRef]
- Vanselow, C.; Stöbener, D.; Kiefer, J.; Fischer, A. Revealing the Impact of Laser-Induced Breakdown on a Gas Flow. Meas. Sci. Technol. 2019, 31, 027001. [Google Scholar] [CrossRef]
- Effenberger, A.J., Jr.; Scott, J.R. Effect of Atmospheric Conditions on LIBS Spectra. Sensors 2010, 10, 4907–4925. [Google Scholar] [CrossRef] [Green Version]
- Šindelářová, A.; Pořízka, P.; Modlitbová, P.; Vrlíková, L.; Kiss, K.; Kaška, M.; Prochazka, D.; Vrábel, J.; Buchtová, M.; Kaiser, J. Methodology for the Implementation of Internal Standard to Laser-Induced Breakdown Spectroscopy Analysis of Soft Tissues. Sensors 2021, 21, 900. [Google Scholar] [CrossRef]
- Ruan, F.; Zhang, T.; Li, H. Laser-Induced Breakdown Spectroscopy in Archeological Science: A Review of Its Application and Future Perspectives. Appl. Spectrosc. Rev. 2019, 54, 573–601. [Google Scholar] [CrossRef]
- Tiwari, P.K.; Rai, N.K.; Kumar, R.; Parigger, C.G.; Rai, A.K. Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals. Atoms 2019, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Qiao, S.; Ding, Y.; Tian, D.; Yao, L.; Yang, G. A Review of Laser-Induced Breakdown Spectroscopy for Analysis of Geological Materials. Appl. Spectrosc. Rev. 2015, 50, 1–26. [Google Scholar] [CrossRef]
- Gottfried, J.L.; De Lucia Jr, F.C.; Munson, C.A.; Miziolek, A.W. Double-Pulse Standoff Laser-Induced Breakdown Spectroscopy for Versatile Hazardous Materials Detection. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1405–1411. [Google Scholar] [CrossRef]
- Wu, J.; Qiu, Y.; Li, X.; Yu, H.; Zhang, Z.; Qiu, A. Progress of Laser-Induced Breakdown Spectroscopy in Nuclear Industry Applications. J. Phys. D Appl. Phys. 2020, 53, 023001. [Google Scholar] [CrossRef]
- Shi, M.; Wu, J.; Zhou, Y.; Qiu, Y.; Zhang, Z.; Li, X. Parametric Study of Spot Size and Multi-Elemental Quantification of Geomaterials under Complex Matrix Conditions Using Fiber-Optic Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta 2022, 192, 106428. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, S.; Gu, S.; Huang, X.; Palmer, J.E.; Giewont, W.; Wang, F.F.; Tolbert, L.M. Design Considerations for High-Voltage Insulated Gate Drive Power Supply for 10-KV SiC MOSFET Applied in Medium-Voltage Converter. IEEE Trans. Ind. Electron. 2020, 68, 5712–5724. [Google Scholar] [CrossRef]
- Fortes, F.J.; Laserna, J.J. The Development of Fieldable Laser-Induced Breakdown Spectrometer: No Limits on the Horizon. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 975–990. [Google Scholar] [CrossRef]
- Dubey, S.; Kumar, R.; Rai, A.K.; Pati, J.K.; Kiefer, J.; Rai, A.K. Rapid Analysis of Chemical Composition and Physical Properties of Gemstones Using LIBS and Chemometric Technique. Appl. Sci. 2021, 11, 6156. [Google Scholar] [CrossRef]
- Vrenegor, J.; Noll, R.; Sturm, V. Investigation of Matrix Effects in Laser-Induced Breakdown Spectroscopy Plasmas of High-Alloy Steel for Matrix and Minor Elements. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 1083–1091. [Google Scholar] [CrossRef]
- Rauschenbach, I.; Lazic, V.; Pavlov, S.G.; Hübers, H.-W.; Jessberger, E.K. Laser Induced Breakdown Spectroscopy on Soils and Rocks: Influence of the Sample Temperature, Moisture and Roughness. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 1205–1215. [Google Scholar] [CrossRef]
- Qiu, Y.; Wu, J.; Yu, H.; Gornushkin, I.B.; Li, J.; Wu, Q.; Zhang, Z.; Li, X. Measurement of Trace Chromium on Structural Steel Surface from a Nuclear Power Plant Using Dual-Pulse Fiber-Optic Laser-Induced Breakdown Spectroscopy. Appl. Surf. Sci. 2020, 533, 147497. [Google Scholar] [CrossRef]
- Shaik, N.B.; Pedapati, S.R.; Taqvi, S.A.A.; Othman, A.R.; Dzubir, F.A.A. A Feed-Forward Back Propagation Neural Network Approach to Predict the Life Condition of Crude Oil Pipeline. Processes 2020, 8, 661. [Google Scholar] [CrossRef]
- Lu, S.; Dong, M.; Huang, J.; Li, W.; Lu, J.; Li, J. Estimation of the Aging Grade of T91 Steel by Laser-Induced Breakdown Spectroscopy Coupled with Support Vector Machines. Spectrochim. Acta Part B At. Spectrosc. 2018, 140, 35–43. [Google Scholar] [CrossRef]
- Bakthavatchalam, B.; Shaik, N.B.; Hussain, P.B. An Artificial Intelligence Approach to Predict the Thermophysical Properties of MWCNT Nanofluids. Processes 2020, 8, 693. [Google Scholar] [CrossRef]
- Sanjana, K.; Babu, M.S.; Sarathi, R.; Chillu, N. Classification of Polluted Silicone Rubber Insulators by Using LIBS Assisted Machine Learning Techniques. IEEE Access 2022, 11, 1752–1760. [Google Scholar] [CrossRef]
- Bellou, E.; Gyftokostas, N.; Stefas, D.; Gazeli, O.; Couris, S. Laser-Induced Breakdown Spectroscopy Assisted by Machine Learning for Olive Oils Classification: The Effect of the Experimental Parameters. Spectrochim. Acta Part B At. Spectrosc. 2020, 163, 105746. [Google Scholar] [CrossRef]
- Diaz, D.; Molina, A.; Hahn, D.W. Laser-Induced Breakdown Spectroscopy and Principal Component Analysis for the Classification of Spectra from Gold-Bearing Ores. Appl. Spectrosc. 2020, 74, 42–54. [Google Scholar] [CrossRef]
- Ipohorski, M.; Luppo, M.I.; Castillo-Guerra, R.; Ovejero-García, J. Failure Analysis of a Steam Valve Stem. Mater. Charact. 2003, 50, 23–30. [Google Scholar] [CrossRef]
- Liao, F.; Wang, M.; Tu, L.; Wang, J.; Lu, L. Micromechanical Fracture Model Parameter Influencing Factor Study of Structural Steels and Welding Materials. Constr. Build. Mater. 2019, 215, 898–917. [Google Scholar] [CrossRef]
- Balasubramanian, V. Relationship between Base Metal Properties and Friction Stir Welding Process Parameters. Mater. Sci. Eng. A 2008, 480, 397–403. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, Y.; Liu, P.; Wang, W. Accelerated Simulation of Chloride Ingress into Concrete under Drying–Wetting Alternation Condition Chloride Environment. Constr. Build. Mater. 2015, 93, 205–213. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, A.; Liu, Y.; Huang, D.; Wu, J.; Li, J.; Zhang, Z.; Li, X.; Wu, Q. The Effect of Inter-Pulse Delay on the Spectral Emission and Expansion Dynamics of Plasma in Dual-Pulse Fiber-Optic Laser-Induced Breakdown Spectroscopy. Phys. Plasmas 2020, 27, 083516. [Google Scholar] [CrossRef]
- Zeaiter, M.; Roger, J.M.; Bellon-Maurel, V. Dynamic Orthogonal Projection. A New Method to Maintain the on-Line Robustness of Multivariate Calibrations. Application to NIR-Based Monitoring of Wine Fermentations. Chemom. Intell. Lab. Syst. 2006, 80, 227–235. [Google Scholar] [CrossRef]
- García, S.; Fernández, A.; Luengo, J.; Herrera, F. A Study of Statistical Techniques and Performance Measures for Genetics-Based Machine Learning: Accuracy and Interpretability. Soft Comput. 2009, 13, 959–977. [Google Scholar] [CrossRef]
- El Haddad, J.; Canioni, L.; Bousquet, B. Good Practices in LIBS Analysis: Review and Advices. Spectrochim. Acta Part B At. Spectrosc. 2014, 101, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.; Wang, P.; Chen, Y.; Stojanovic, V.; Yang, H. An Unsupervised Fault Diagnosis Method for Rolling Bearing Using STFT and Generative Neural Networks. J. Frankl. Inst. 2020, 357, 7286–7307. [Google Scholar] [CrossRef]
- Begam, S.S.J.V.; Selvachandran, G.; Ngan, T.T.; Sharma, R. Similarity Measure of Lattice Ordered Multi-Fuzzy Soft Sets Based on Set Theoretic Approach and Its Application in Decision Making. Mathematics 2020, 8, 1255. [Google Scholar] [CrossRef]
- Saqlain, M.; Jafar, N.; Moin, S.; Saeed, M.; Broumi, S. Single and Multi-Valued Neutrosophic Hypersoft Set and Tangent Similarity Measure of Single Valued Neutrosophic Hypersoft Sets. Neutrosophic Sets Syst. 2020, 32, 317–329. [Google Scholar]
- Mohebali, B.; Tahmassebi, A.; Meyer-Baese, A.; Gandomi, A.H. Probabilistic Neural Networks: A Brief Overview of Theory, Implementation, and Application. Handb. Probabilistic Models 2020, 347–367. [Google Scholar] [CrossRef]
- Alweshah, M.; Rababa, L.; Ryalat, M.H.; Al Momani, A.; Ababneh, M.F. African Buffalo Algorithm: Training the Probabilistic Neural Network to Solve Classification Problems. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 1808–1818. [Google Scholar] [CrossRef]
- Chen, G.; Davies, A.E.; Banford, H.M. Influence of Radiation Environments on Space Charge Formation in/Spl Gamma/-Irradiated LDPE. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 882–886. [Google Scholar] [CrossRef]
- Qiu, Y.; Wu, J.; Zhang, Z.; Liu, T.; Xue, F.; Hang, Y.; Wu, Y.; Yu, H.; Li, X. Comparisons of Laser-Produced Plasma in Atmosphere between Fiber-Delivery and Direct-Focusing Laser Pulse. Spectrochim. Acta Part B At. Spectrosc. 2019, 155, 12–23. [Google Scholar] [CrossRef]
Material Name | Number of Samples | Sample Size | Aging Degree (Hours) |
---|---|---|---|
Valve Stem | 10 | 10 × 10 × 4 mm | 0, 100, 300, 500, 1000 |
Welding Material | 12 | 10 × 10 × 4 mm | 0, 2000, 5000, 10,000, 13,000, 35,000 |
Base Metal | 10 | 10 × 10 × 4 mm | 0, 2000, 5000, 10,000, 13,000 |
Material Name | Mass Fraction of Elements, wt.% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | Si | Mn | P | S | Ni | N | Cr | Cu | W | Fe | |
Valve Stem | 0.15 | 0.8 | 0.9 | <0.03 | <0.025 | 0.5 | — | 11.2 | 0.5 | 0.7 | ~83 |
Welding Material | 0.016 | 0.32 | 1.33 | 0.015 | 0.011 | 10.30 | — | 19.88 | 0.065 | — | Bal. |
Base Metal | 0.011 | 0.24 | 1.30 | — | — | 13.12 | 0.122 | 17.18 | — | — | Bal. |
Material Name | Total Number of Spectra | Materials Classification | Training Set | Test Set | Aging Prediction | Training Set | Test Set |
Valve Stem | 80 | 56 (7 samples) | 24 (3 samples) | 55 (5 aging levels) | 25 (5 aging levels) | ||
Welding Material | 90 | 56 (8 samples) | 28 (4 samples) | 60 (6 aging levels) | 30 (6 aging levels) | ||
Base Metal | 80 | 56 (8 samples) | 24 (3 samples) | 55 (5 aging levels) | 25 (5 aging levels) |
PNN | GA_PNN | PSO_PNN | GA_PNN | |
---|---|---|---|---|
Optimal σ | 0.5 | 0.0499 | 0.0734 | 0.1376 |
Number of Iterations at Local Optimal Time | 33 | 14 | 8 | 6 |
Local Optimal RMSE | 0.5423 | 0.1715 | 0.2301 | 0.0767 |
Number of Iterations at Global Optimal Time | 86 | 45 | 34 | 17 |
Global Optimal RMSE | 0.3443 | 0.1085 | 0.0767 | 0 |
Algorithm | Training Samples | Test Samples | Running Time/s | ||||
---|---|---|---|---|---|---|---|
Total Sample | Correct Sample Identification | Correct Rate/% | Total Sample | Correct Sample Identification | Correct Rate/% | ||
PNN ( | 170 | 155 | 91.1764 | 80 | 74 | 92.50 | 1.8750 |
GA_PNN ( | 170 | 170 | 100 | 80 | 77 | 96.25 | 306.7247 |
PSO_PNN () | 170 | 170 | 100 | 80 | 77 | 96.25 | 183.1538 |
FA_PNN () | 170 | 170 | 100 | 80 | 80 | 100 | 7.3597 |
Number | Operation Hours | Hardness Test Value (Vickers Hardness) | Average | ||
---|---|---|---|---|---|
First Test | Second Test | Third Test | |||
0 | 0.5 | 411.8 | 407.3 | 411.8 | 410.3 |
1 | 33 | 423.2 | 430.4 | 437.7 | 430.4333 |
2 | 0.5423 | 435.2 | 432.8 | 440.1 | 436.0333 |
3 | 86 | 458.1 | 442.6 | 440.1 | 446.9333 |
4 | 0.3443 | 474.3 | 477.1 | 494.4 | 481.9333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Li, G.; Hang, Y.; Chen, S.; Qiu, Y.; Zhao, W. Material Classification and Aging Time Prediction of Structural Metals Using Laser-Induced Breakdown Spectroscopy Combined with Probabilistic Neural Network. Materials 2023, 16, 5599. https://doi.org/10.3390/ma16165599
Wang Q, Li G, Hang Y, Chen S, Qiu Y, Zhao W. Material Classification and Aging Time Prediction of Structural Metals Using Laser-Induced Breakdown Spectroscopy Combined with Probabilistic Neural Network. Materials. 2023; 16(16):5599. https://doi.org/10.3390/ma16165599
Chicago/Turabian StyleWang, Qian, Guowen Li, Yuhua Hang, Silei Chen, Yan Qiu, and Wanmeng Zhao. 2023. "Material Classification and Aging Time Prediction of Structural Metals Using Laser-Induced Breakdown Spectroscopy Combined with Probabilistic Neural Network" Materials 16, no. 16: 5599. https://doi.org/10.3390/ma16165599
APA StyleWang, Q., Li, G., Hang, Y., Chen, S., Qiu, Y., & Zhao, W. (2023). Material Classification and Aging Time Prediction of Structural Metals Using Laser-Induced Breakdown Spectroscopy Combined with Probabilistic Neural Network. Materials, 16(16), 5599. https://doi.org/10.3390/ma16165599