Effect of Austempering Processes on the Tensile Properties and the Work-Hardening Behavior of Austempered Bainitic Steels Below the Martensite Start Temperature
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Mechanical Properties
3.2. Microstructure
3.3. XRD Analysis
3.4. Tensile Fracture Morphology
3.5. Theoretical Model of the Work-Hardening Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caballero, F.G.; Bhadeshia, H.K.D.H. Very strong bainite. Curr. Opin. Solid State Mater. Sci. 2004, 8, 251–257. [Google Scholar] [CrossRef]
- Lan, H.F.; Du, L.X.; Li, Q.; Qiu, C.L.; Li, J.P.; Misra, R.D.K. Improvement of strength-toughness combination in austempered low carbon bainitic steel: The key role of refining prior austenite grain size. J. Alloys Compd. 2017, 710, 702–710. [Google Scholar]
- Long, X.Y.; Zhang, F.C.; Yang, Z.N.; Lv, B. Study on microstructures and properties of carbide-free and carbide-bearing bainitic steels. Mater. Sci. Eng. A 2018, 715, 10–16. [Google Scholar] [CrossRef]
- Luo, H.W.; Wang, X.H.; Liu, Z.B.; Yang, Z.Y. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel. J. Mater. Sci. Technol. 2020, 51, 130–136. [Google Scholar] [CrossRef]
- Zhou, S.B.; Hu, F.; Zhou, W.; Cheng, L.; Hu, C.Y.; Wu, K.M. Effect of retained austenite on impact toughness and fracture behavior of medium carbon submicron-structured bainitic steel. J. Mater. Res. Technol. 2021, 14, 1021–1034. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A. Mechanical properties of nanostructured bainitic steels. Materialia 2021, 15, 101034. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, H.; Gui, X.; Luo, P.; Tan, Z.; Bai, B. Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: The great potential of ultrafine filmy retained austenite. Acta Mater. 2014, 76, 425–433. [Google Scholar]
- Zhou, S.B.; Hu, F.; Cheng, L.; Isayev, O.; Yershov, S.; Xiang, H.J.; Wu, K.M. Insight into the impact of microstructure on crack initiation/propagation behavior in carbide-free bainitic steel during tensile deformation. Mater. Sci. Eng. A 2022, 846, 143175. [Google Scholar] [CrossRef]
- Radcliffe, S.; Rollason, E. The kinetics of the formation of bainite in high-purity iron-carbon alloys. J. Iron Steel Inst. 1959, 191, 56–65. [Google Scholar]
- Van Bohemen, S.M.C.; Santofimia, M.J.; Sietsma, J. Experimental evidence for bainite formation below Ms in Fe–0.66C. Scr. Mater. 2008, 58, 488–491. [Google Scholar] [CrossRef]
- Zhao, L.; Qian, L.; Meng, J.; Zhou, Q.; Zhang, F. Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels. Scr. Mater. 2016, 112, 96–100. [Google Scholar]
- Samanta, S.; Biswas, P.; Giri, S.; Singh, S.B.; Kundu, S. Formation of bainite below the M temperature: Kinetics and crystallography. Acta Mater. 2016, 105, 390–403. [Google Scholar]
- Xia, S.; Zhang, F.; Yang, Z. Microstructure and mechanical properties of 18Mn3Si2CrMo steel subjected to austempering at different temperatures below Ms. Mater. Sci. Eng. A 2018, 724, 103–111. [Google Scholar] [CrossRef]
- Wang, K.; Hu, F.; Zhou, S.; Zhou, W.; Zhang, Z.; Yershov, S.; Wu, K. Effect of microstructure transformation below MS temperature in bainitic steels on the impact-abrasive wear behavior. Wear 2023, 514, 204589. [Google Scholar]
- Zhao, L.; Qian, L.; Zhou, Q.; Li, D.; Wang, T.; Jia, Z.; Zhang, F.; Meng, J. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel. Mater. Des. 2019, 183, 108123. [Google Scholar]
- García-Mateo, C.; Caballero, F.G. The role of retained austenite on tensile properties of steels with bainitic microstructures. Mater. Trans. 2005, 46, 1839–1846. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Caballero, F.G.; Sourmail, T.; Kuntz, M.; Cornide, J.; Smanio, V.; Elvira, R. Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon. Mater. Sci. Eng. A 2012, 549, 185–192. [Google Scholar]
- Misra, A.; Sharma, S.; Sangal, S.; Upadhyaya, A.; Mondal, K. Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels. Mater. Sci. Eng. A 2012, 558, 725–729. [Google Scholar]
- Seo, E.J.; Cho, L.; Estrin, Y.; De Cooman, B.C. Microstructure-mechanical properties relationships for quenching and partitioning (Q&P) processed steel. Acta Mater. 2016, 113, 124–139. [Google Scholar]
- Speer, J.G.; Assunção, F.C.R.; Matlock, D.K.; Edmonds, D.V. The “quenching and partitioning” process: Background and recent progress. Mater. Res. 2005, 8, 417–423. [Google Scholar]
- Chhajed, B.; Mishra, K.; Singh, K.; Singh, A. Effect of prior austenite grain size on the tensile properties and fracture toughness of nano-structured bainite. Mater. Charact. 2022, 192, 112214. [Google Scholar]
- Dyson, D.J.; Holmes, B. Effect of alloying additions on the lattice parameter of austenite. J. Iron Steel Inst. 1970, 208, 469–474. [Google Scholar]
- Ghadbeigi, H.; Pinna, C.; Celotto, S.; Yates, J.R. Local plastic strain evolution in a high strength dual-phase steel. Mater. Sci. Eng. A 2010, 527, 5026–5032. [Google Scholar] [CrossRef]
- Bolaños, J.A.M.; Cobos, O.F.H.; Marrero, J.M.C. Strain hardening behavior of ARMCO iron processed by ECAP. IOP Conf. Ser. Mater. Sci. Eng. 2014, 63, 012143. [Google Scholar] [CrossRef]
- Tomita, Y.; Okabayashi, K. Tensile stress-strain analysis of cold worked metals and steels and dual-phase steels. Metall. Trans. A 1985, 16, 865–872. [Google Scholar] [CrossRef]
- Cao, J.; Li, F.-g.; Ma, X.-k.; Sun, Z.-k. Tensile stress–strain behavior of metallic alloys. Trans. Nonferrous Met. Soc. China 2017, 27, 2443–2453. [Google Scholar] [CrossRef]
- Jaoul, P.B. Etude de la forme des courbes de deformation plastique. J. Mech. Phys. Solids 1957, 5, 95–114. [Google Scholar] [CrossRef]
- Collette, G.; Crussard, C.; Kohn, A.; Plateau, J.; Pomey, G.; Weisz, M. Contribution à l’étude des transformations des austénites à 12% Mn. Rev. Metall. 1957, 54, 433–486. [Google Scholar] [CrossRef]
- Crussard, C.; Borione, R.; Plateau, J.; Morillon, Y.; Maratray, F. Une analyse de l’essai de résilience et du mécanisme des ruptures fragiles. Rev. Metall. 1956, 54, 638–646. [Google Scholar] [CrossRef]
- Lian, J.; Jiang, Z.; Liu, J. Theoretical model for the tensile work hardening behaviour of dual-phase steel. Mater. Sci. Eng. A 1991, 147, 55–65. [Google Scholar]
- Umemoto, M.; Liu, Z.G.; Sugimoto, S.; Tsuchiya, K. Tensile stress-strain analysis of single-structure steels. Metall. Mater. Trans. A 2000, 31, 1785–1794. [Google Scholar] [CrossRef]
- Zhu, L.; Luo, J.; Wu, G.; Han, J.; Chen, Y.; Song, C. Study on strain response of X80 pipeline steel during weld dent deformation. Eng. Fail. Anal. 2021, 123, 105303. [Google Scholar] [CrossRef]
- Swift, H.W. Plastic instability under plane stress. J. Mech. Phys. Solids 1952, 1, 1–18. [Google Scholar] [CrossRef]
- Korzekwa, D.A.; Matlock, D.K.; Krauss, G. Dislocation substructure as a function of strain in a dual-phase steel. Metall. Trans. A 1984, 15, 1221–1228. [Google Scholar] [CrossRef]
- Liu, L.; He, B.B.; Cheng, G.J.; Yen, H.W.; Huang, M.X. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite. Scr. Mater. 2018, 150, 1–6. [Google Scholar] [CrossRef]
- Toloui, M.; Militzer, M. Phase field modeling of the simultaneous formation of bainite and ferrite in TRIP steel. Acta Mater. 2018, 144, 786–800. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, W.; Song, R.; Wang, L.; Geng, Z.; Wang, J.; Zhou, T.; Xue, H. The effect of isothermal bainitic transformation time on austenite stability of TRIP-980 steel with high ductility. Mater. Lett. 2022, 326, 132927. [Google Scholar] [CrossRef]
C | Si | Mn | Ni | Cr | Al | Mo | Fe |
---|---|---|---|---|---|---|---|
0.30 | 1.52 | 0.26 | 1.51 | 0.27 | 1.10 | 0.25 | Bal. |
Sample | Hollomon Analysis, n | Differential C−J Analysis, (n1 − 1) | Modified C−J Analysis, (1 − q) | ||||
---|---|---|---|---|---|---|---|
Slope 1 | Slope 2 | Slope 1 | Slope 2 | Slope 3 | Slope 1 | Slope 2 | |
AT400 | 0.83 | 0.35 | −0.19 | −0.91 | −21.01 | −0.20 | −3.99 |
AT350 | 0.95 | 0.20 | −0.24 | −4.00 | −29.53 | −0.25 | −19.42 |
AT300 | 0.92 | 0.23 | −0.22 | −4.05 | −30.56 | −0.23 | −18.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Hu, F.; Zhou, W.; Yershov, S.; Li, L.; Wu, K. Effect of Austempering Processes on the Tensile Properties and the Work-Hardening Behavior of Austempered Bainitic Steels Below the Martensite Start Temperature. Materials 2023, 16, 5562. https://doi.org/10.3390/ma16165562
Wang K, Hu F, Zhou W, Yershov S, Li L, Wu K. Effect of Austempering Processes on the Tensile Properties and the Work-Hardening Behavior of Austempered Bainitic Steels Below the Martensite Start Temperature. Materials. 2023; 16(16):5562. https://doi.org/10.3390/ma16165562
Chicago/Turabian StyleWang, Kun, Feng Hu, Wen Zhou, Serhii Yershov, Li Li, and Kaiming Wu. 2023. "Effect of Austempering Processes on the Tensile Properties and the Work-Hardening Behavior of Austempered Bainitic Steels Below the Martensite Start Temperature" Materials 16, no. 16: 5562. https://doi.org/10.3390/ma16165562
APA StyleWang, K., Hu, F., Zhou, W., Yershov, S., Li, L., & Wu, K. (2023). Effect of Austempering Processes on the Tensile Properties and the Work-Hardening Behavior of Austempered Bainitic Steels Below the Martensite Start Temperature. Materials, 16(16), 5562. https://doi.org/10.3390/ma16165562