Synergistic Effect of Precursor and Interface Engineering Enables High Efficiencies in FAPbI3 Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Solar Cells
2.2.1. Substrate Preparation
2.2.2. TiO2
2.2.3. Mesoporous TiO2
2.2.4. Preparation of the Precursor
2.2.5. Perovskite Layer Fabrication
2.2.6. 2D Perovskite Fabrication
2.2.7. Hole-Transporting Layer
2.2.8. Top Surface Contacts
2.3. Characterization Techniques
2.3.1. Current Voltage (I-V) Measurements
2.3.2. Scanning Electron Microscopy (SEM)
2.3.3. UV-Vis-NIR Spectroscopy
2.3.4. Transient Absorption Measurements (TAS)
2.3.5. X-ray Photoelectron Spectroscopy (XPS)
2.3.6. X-ray Diffraction (XRD)
2.3.7. Atomic Force Microscopy (AFM)
3. Results and Discussion
3.1. Obtaining the Right Precursor Stoichiometry for Obtaining High-Efficiency Solar Cells
3.2. Optimization of the Concentration of the Large Cation to Improve the PCE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Ava, T.T.; Mamun, A.A.; Marsillac, S.; Namkoong, G. A Review: Thermal Stability of Methylammonium Lead Halide Based Perovskite Solar Cells. Appl. Sci. 2019, 9, 188. [Google Scholar] [CrossRef] [Green Version]
- Juarez-Perez, E.J.; Ono, L.K.; Qi, Y. Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. J. Mater. Chem. A 2019, 7, 16912–16919. [Google Scholar] [CrossRef]
- Koh, T.M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T.C.; Mathews, N.; Mhaisalkar, S.G.; Boix, P.P.; Baikie, T. Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. J. Phys. Chem. C 2014, 118, 16458–16462. [Google Scholar] [CrossRef]
- Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M.K.; Maier, J.; Grätzel, M. Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angew. Chem. Int. Ed. 2014, 53, 3151–3157. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Seol, D.-J.; Cho, A.-N.; Park, N.-G. High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3. Adv. Mater. 2014, 26, 4991–4998. [Google Scholar] [CrossRef]
- Li, Z.; Yang, M.; Ji-Sang Park, J.-S.; Wei, S.-H.; Berry, J.J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance.Factor: Formation of Formamidinium and Cesium Lead Iodide Alloys Solid-State. Chem. Mater. 2016, 28, 284–292. [Google Scholar] [CrossRef]
- Chu, L. Pseudohalide anion engineering for highly efficient and stable perovskite solar cells. Matter 2021, 4, 1755–1767. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef]
- Masi, S.; Reyes, A.F.G.; Mora-Seró, I. Stabilization of Black Perovskite Phase in FAPbI3 and CsPbI3. ACS Energy Lett. 2020, 5, 1974–1985. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Kim, D.-H.; Kim, H.-S.; Seo, S.-W.; Cho, S.M.; Park, N.-G. Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. Adv. Energy Mater. 2015, 5, 1501310. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S.M.; Correa-Baena, J.-P.; Tress, W.R.; Abate, A.; Hagfeldt, A.; et al. Incorporation of rubidium cationsinto perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209. [Google Scholar] [CrossRef] [PubMed]
- McMeekin, D.P.; Sadoughi, G.; Rehman, W.; Eperon, G.E.; Saliba, M.; Hörantner, T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Dong, L.; Jang, D.; Tam, K.C.; Zhang, K.; Li, N.; Guo, F.; Li, C.; Arrive, C.; Bertrand, M.; et al. Fully solution processed pure α-phase formamidinium lead iodide perovskite solar cells for scalable production in ambient condition. Adv. Energy Mater. 2020, 10, 2001869. [Google Scholar] [CrossRef]
- Liu, Y.; Akin, S.; Hinderhofer, A.; Eickemeyer, F.T.; Zhu, H.; Seo, J.Y. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem. Int. Ed. 2020, 59, 15688–15694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Z.; Qin, M.; Ren, Z.; Liu, K.; Huang, J.; Shen, D.; Wu, Z.; Zhang, Y.; Hao, J.; et al. Multifunctional crosslinking-enabled strain-regulating crystallization for stable, efficient α-FAPbI3-based perovskite solar cells. Adv. Mater. 2021, 33, 2008487. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, G.-H.; Lee, T.K.; Choi, I.W.; Choi, H.W.; Jo, Y.; Yoon, Y.J.; Kim, J.W.; Lee, J.; Huh, D.; et al. Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule 2019, 3, 2179–2192. [Google Scholar] [CrossRef]
- Lyu, M.; Park, N.-G. Effect of Additives AX (A = FA, MA, Cs, Rb, NH4, X = Cl, Br, I) in FAPbI3 on Photovoltaic Parameters of Perovskite Solar Cells. Sol. RRL 2020, 4, 2000331. [Google Scholar] [CrossRef]
- Min, H.; Kim, M.; Lee, S.-U.; Kim, H.; Kim, G.; Choi, K.; Lee, J.H.; Seok, S.I. Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide. Science 2019, 366, 749–753. [Google Scholar] [CrossRef]
- Kim, G.; Min, H.; Su Lee, K.S.; Lee, D.Y.; Yoon, S.M.; Seok, S.I. Impact of strain relaxation on performance of a-formamidinium lead iodide perovskite solar cells. Science 2020, 370, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wu, T.; Wang, J.; Zhai, J.; Shearer, M.J.; Zhao, Y.; Hamers, R.J.; Kan, E.; Deng, K.; Zhu, X.-Y.; et al. Stabilization of the metastable lead iodide perovskite phase via surface functionalization. Nano Lett. 2017, 17, 4405–4414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suo, J.; Yang, B.; Jeong, J.; Zhang, T.; Olthof, S.; Gao, F.; Grätzel, M.; Boschloo, G.; Hagfeldt, A. Interfacial engineering from material to solvent: A mechanistic understanding on stabilizing α-formamidinium lead triiodide perovskite photovoltaics. Nano Energy 2022, 94, 106924. [Google Scholar] [CrossRef]
- Jung, E.H.; Jeon, N.J.; Park, E.Y.; Moon, C.S.; Shin, T.J.; Yang, T.-Y.; Noh, J.H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567, 511–515. [Google Scholar] [CrossRef]
- Idigoras, J.; Burdzinski, G.; Karolczak, J.; Kubicki, J.; Oskam, G.; Anta, J.A.; Ziołek, M. The impact of the electrical nature of the metal oxide on the performance in dye-sensitized solar cells: New look at old paradigms. J. Phys. Chem. C 2015, 119, 3931–3944. [Google Scholar] [CrossRef]
- ISO 15472:2010; Surface chemical analysis — X-ray photoelectron spectrometers — Calibration of energy scales. ISO: Geneva, Switzerland, 2010.
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Yang, C.; Du, P.; Dai, Z.; Li, H.; Yang, X.; Chen, Q. Effects of Illumination Direction on the Surface Potential of CH3NH3PbI3 Perovskite Films Probed by Kelvin Probe Force Microscopy. ACS Appl. Mater. Interfaces 2019, 11, 14044–14050. [Google Scholar] [CrossRef]
- Harwell, J.R.; Baikie, T.K.; Baikie, I.D.; Payne, J.L.; Ni, C.; Irvine, J.T.S.; Turnbull, G.A.; Samuel, I.D.W. Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 19738–19745. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Pathak, S.; Sakai, N.; Stergiopoulos, T.; Nayak, P.K.; Noel, N.K.; Haghighirad, A.A.; Burlakov, V.M.; de Quilettes, D.W.; Sadhanala, A.; et al. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 2015, 6, 10030. [Google Scholar] [CrossRef] [Green Version]
- Euvrard, J.; Gunawan, O.; Mitzi, D.B. Impact of PbI2 Passivation and Grain Size Engineering in CH3NH3PbI3 Solar Absorbers as Revealed by Carrier-Resolved Photo-Hall Technique. Adv. Energy Mater. 2019, 9, 1902706. [Google Scholar] [CrossRef]
- Wilk, B.; Sahayaraj, S.; Ziółek, M.; Babu, V.; Kudrawiec, R.; Wojciechowski, K. Inkjet Printing of Quasi-2D Perovskite Layers with Optimized Drying Protocol for Efficient Solar Cells. Adv. Mater. Technol. 2022, 7, 2200606. [Google Scholar] [CrossRef]
- Shi, B.; Yao, X.; Hou, F.; Guo, S.; Li, Y.; Wei, C.; Ding, Y.; Li, Y.; Zhao, Y.; Zhang, X. Unraveling the Passivation Process of PbI2 to Enhance Efficiency of Planar Perovskite Solar Cells. J. Phys. Chem. C 2018, 122, 21269–21276. [Google Scholar] [CrossRef]
- Merdasa, A.; Kiligaridis, A.; Rehermann, C.; Abdi-Jalebi, M.; Stöber, J.; Louis, B.; Gerhard, M.; Stranks, S.D.; Unger, E.L.; Scheblykin, I.G. Impact of Excess Lead Iodide on the Recombination Kinetics in Metal Halide Perovskites. ACS Energy Lett. 2019, 4, 1370–1378. [Google Scholar] [CrossRef]
- Park, B.; Kedem, N.; Kulbak, M.; Lee, D.Y.; Yang, W.S.; Jeon, N.J.; Seo, J.; Kim, G.; Kim, K.J.; Shin, T.J.; et al. Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat. Commun. 2018, 9, 3301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, 2nd ed.; Chastain, J., Ed.; Perkin-Elmer Corporation (Physical Electronics): Eden Prairie, MN, USA, 1992. [Google Scholar]
- NIST 20899; X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20. National Institute of Standards and Technology: Gaithersburg, MD, USA, 2000. [CrossRef]
- Mutlu, A.; Yeşil, T.; Kiymaz, D.; Zafer, C. Approach to Enhance the Stability and Efficiency of Triple-Cation Perovskite Solar Cells by Reactive Antisolvents. ACS Appl. Energy Mater. 2021, 4, 47–60. [Google Scholar] [CrossRef]
- Wang, M.; Sun, H.; Meng, L.; Wang, M.; Li, L. A Universal Strategy of Intermolecular Exchange to Stabilize α-FAPbI3 and Manage Crystal Orientation for High-Performance Humid-Air-Processed Perovskite Solar Cells. Adv. Mater. 2022, 34, 2200041. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, D.; Cheng, J.; Lin, F.; Mao, J.; Jen, A.K.-Y.; Grätzel, M.; Choy, W.C.H. Room temperature formation of organic–inorganic lead halide perovskites: Design of nanostructured and highly reactive intermediates. J. Mater. Chem. A 2017, 5, 3599–3608. [Google Scholar] [CrossRef]
- Oner, S.M.; Sezen, E.; Yordanli, M.S.; Karakoc, E.; Deger, C.; Yavuz, I. Surface Defect Formation and Passivation in Formamidinium Lead Triiodide (FAPbI3) Perovskite Solar Cell Absorbers. J. Phys. Chem. Lett. 2022, 13, 324–330. [Google Scholar] [CrossRef]
- Yang, S.; Liu, W.; Han, Y.; Liu, Z.; Zhao, W.; Duan, C.; Che, Y.; Gu, H.; Li, Y.; Liu, S. 2D Cs2PbI2Cl2 Nanosheets for Holistic Passivation of Inorganic CsPbI2Br Perovskite Solar Cells for Improved Efficiency and Stability. Adv. Energy Mater. 2020, 10, 2002882. [Google Scholar] [CrossRef]
- Xu, H.; Sun, Y.; Zheng, H.; Liu, G.; Xu, X.; Xu, S.; Zhang, L.; Chen, X.; Pan, X. High-performance and moisture-stable perovskite solar cells with a 2D modified layer via introducing a high dipole moment cation. J. Mater. Chem. C 2019, 7, 15276. [Google Scholar] [CrossRef]
- Zou, Y.; Cui, Y.; Wang, H.-Y.; Cai, Q.; Mu, C.; Zhang, J.-P. Highly efficient and stable 2D–3D perovskite solar cells fabricated by interfacial modification. Nanotechnology 2019, 30, 275202. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Liang, C.; Mei, S.; Gu, H.; He, B.; Zhang, Z.; Liu, T.; Wang, K.; Wang, S.; Chen, S.; et al. Deep Surface Passivation for Efficient and Hydrophobic Perovskite Solar Cells. J. Mater. Chem. A 2021, 9, 2919–2927. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Liu, J.; Leng, J.; Wu, K.; Zhang, J.; Jin, S. Observation of Internal Photoinduced Electron and Hole Separation in Hybrid 2-Dimentional Perovskite Films. J. Am. Chem. Soc. 2017, 139, 1432–1435. [Google Scholar] [CrossRef]
- Hua, Y.; Zhou, Y.; Hong, D.; Wan, S.; Hu, X.; Xie, D.; Tian, T. Identification of the Band Gap Energy of Two-dimensional (OA)2 (MA)n−1 PbnI3n+1 Perovskite with up to 10 Layers. J. Phys. Chem. Lett. 2019, 10, 7025–7030. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, J.; Ahmad, S.; Tu, D.; Liu, X.; Jia, G.; Guo, X.; Li, C. Dion-Jacobson 2D-3D perovskite solar cells with improved efficiency and stability. Nano Energy 2020, 75, 104892. [Google Scholar] [CrossRef]
Sample Type | Jsc (mA/cm2) | Voc (V) | FF (%) | PCE (Average), Best (%) |
---|---|---|---|---|
3D PVK | 22.3 | 0.74 | 58 | (8.8 ± 0.4), 9.6 |
3D/OAI | 18.4 | 0.82 | 50 | (7.0 ± 0.4), 7.5 |
Sample | C=O %(C 1s) Absolute Spectra | C=O %(O 1s) Absolute Spectra | Sum C=O (%) |
---|---|---|---|
3D PVK (S) | 15 | 8.64 | 23.64 |
3D/OAI | 14.2 | 5.78 | 19.98 |
3D PVK (NS) | 11.78 | 11.56 | 23.34 |
Sample | C-N (C 1S)% Absolute Spectra | C-N (N 1S)% Absolute Spectra | Sum (C-N) % |
---|---|---|---|
3D PVK (S) | 11.7 | 73.7 | 85.4 |
3D/OAI | 12.3 | 81 | 93.3 |
3D PVK (NS) | 18.8 | 79 | 97.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahayaraj, S.; Starowicz, Z.; Ziółek, M.; Socha, R.; Major, Ł.; Góral, A.; Gawlińska-Nęcek, K.; Palewicz, M.; Sikora, A.; Piasecki, T.; et al. Synergistic Effect of Precursor and Interface Engineering Enables High Efficiencies in FAPbI3 Perovskite Solar Cells. Materials 2023, 16, 5352. https://doi.org/10.3390/ma16155352
Sahayaraj S, Starowicz Z, Ziółek M, Socha R, Major Ł, Góral A, Gawlińska-Nęcek K, Palewicz M, Sikora A, Piasecki T, et al. Synergistic Effect of Precursor and Interface Engineering Enables High Efficiencies in FAPbI3 Perovskite Solar Cells. Materials. 2023; 16(15):5352. https://doi.org/10.3390/ma16155352
Chicago/Turabian StyleSahayaraj, Sylvester, Zbigniew Starowicz, Marcin Ziółek, Robert Socha, Łukasz Major, Anna Góral, Katarzyna Gawlińska-Nęcek, Marcin Palewicz, Andrzej Sikora, Tomasz Piasecki, and et al. 2023. "Synergistic Effect of Precursor and Interface Engineering Enables High Efficiencies in FAPbI3 Perovskite Solar Cells" Materials 16, no. 15: 5352. https://doi.org/10.3390/ma16155352
APA StyleSahayaraj, S., Starowicz, Z., Ziółek, M., Socha, R., Major, Ł., Góral, A., Gawlińska-Nęcek, K., Palewicz, M., Sikora, A., Piasecki, T., Gotszalk, T., & Lipiński, M. (2023). Synergistic Effect of Precursor and Interface Engineering Enables High Efficiencies in FAPbI3 Perovskite Solar Cells. Materials, 16(15), 5352. https://doi.org/10.3390/ma16155352