Fabrication of mm-Scale Complementary Split Ring Resonators, for Potential Application as Water Pollution Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metasurface Fabrication
2.2. Optical Microscopy Experiments
2.3. Electromagnetic Characterization
2.4. Aqueous (Pollutants) Solution Preparation
2.5. Sensing Performance of the Fabricted MSs
2.6. Photocatalytic Experiments
2.7. Raman Spectroscopy Experiments
2.8. UV-Vis Spectroscopy Experiments
2.9. Theoretical Simulations
3. Results
3.1. Optical Microscopy
3.2. Electromagnetic Characterization
3.3. Sensing Performance of the Fabricated MSs
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schweitzer, L.; Noblet, J. Chapter 3.6—Water contamination and pollution. In Green Chemistry; Török, B., Dransfield, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 261–290. ISBN 978-0-12-809270-5. [Google Scholar]
- Peirce, J.J.; Weiner, R.F.; Vesilind, P.A. (Eds.) Chapter 3—Water Pollution. In Environmental Pollution and Control, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1998; pp. 31–55. [Google Scholar]
- Weiner, R.F.; Matthews, R. (Eds.) Chapter 4—Water Pollution. In Environmental Engineering, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2003; pp. 51–79. ISBN 978-0-7506-7294-8. [Google Scholar]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209. [Google Scholar]
- Crawford, N.M. Nitrate: Nutrient and signal for plant growth. Plant Cell 1995, 7, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Chislock, M.F.; Doster, E.; Zitomer, R.A.; Wilson, A.E. Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems. Nat. Educ. Knowl. 2013, 4, 10. [Google Scholar]
- Mousavi, S.A.; Khodadoost, F. Effects of detergents on natural ecosystems and wastewater treatment processes: A review. Environ. Sci. Pollut. Res. Int. 2019, 26, 26439–26448. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, F.J. Detergents and Water Pollution Abatement. Am. J. Public Health Nations Health 1965, 55, 760–771. [Google Scholar] [CrossRef]
- Richards, S.; Paterson, E.; Withers, P.J.A.; Stutter, M. The contribution of household chemicals to environmental discharges via effluents: Combining chemical and behavioural data. J. Environ. Manag. 2015, 150, 427–434. [Google Scholar] [CrossRef]
- Magill, G.; Benedict, J. Cascading Challenges in the Global Water Crisis; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2019; ISBN 9781527528123/152752812X. [Google Scholar]
- Ma, H.F.; Cui, T.J. Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun. 2010, 1, 124. [Google Scholar] [CrossRef]
- Pan, Y.; Lan, F.; Zhang, Y.; Zeng, H.; Wang, L.; Song, T.; He, G.; Yang, Z. Dual-band multifunctional coding metasurface with a mingled anisotropic aperture for polarized manipulation in full space. Photon. Res. 2022, 10, 416–425. [Google Scholar] [CrossRef]
- Demetillo, A.T.; Japitana, M.V.; Taboada, E.B. A system for monitoring water quality in a large aquatic area using wireless sensor network technology. Sustain. Environ. Res. 2019, 29, 12. [Google Scholar] [CrossRef]
- Prosposito, P.; Burratti, L.; Venditti, I. Silver Nanoparticles as Colorimetric Sensors for Water Pollutants. Chemosensors 2020, 8, 26. [Google Scholar] [CrossRef]
- Yaroshenko, I.; Kirsanov, D.; Marjanovic, M.; Lieberzeit, P.A.; Korostynska, O.; Mason, A.; Frau, I.; Legin, A. Real-Time Water Quality Monitoring with Chemical Sensors. Sensors 2020, 20, 3432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, H.; Wang, Z.; Majdi, A.; Wang, G.; Salameh, A.A.; Abdulkreem AL-Huqail, A.; Ali, H.E. Electrochemical monitoring sensors of water pollution systems. Food Chem. Toxicol. 2022, 166, 113196. [Google Scholar] [CrossRef] [PubMed]
- Zografopoulos, D.C.; Tsilipakos, O. Recent advances in strongly resonant and gradient all-dielectric metasurfaces. Mater. Adv. 2023, 4, 11–34. [Google Scholar] [CrossRef]
- Cui, T.J. Microwave metamaterials. Natl. Sci. Rev. 2018, 5, 134–136. [Google Scholar] [CrossRef]
- Chiang, W.-F.; Silalahi, H.M.; Chiang, Y.-C.; Hsu, M.-C.; Zhang, Y.-S.; Liu, J.-H.; Yu, Y.; Lee, C.-R.; Huang, C.-Y. Continuously tunable intensity modulators with large switching contrasts using liquid crystal elastomer films that are deposited with terahertz metamaterials. Opt. Express 2020, 28, 27676–27687. [Google Scholar] [CrossRef]
- Zhao, F.; Li, Z.; Li, S.; Dai, X.; Zhou, Y.; Liao, X.; Cao, J.C.; Liang, G.; Shang, Z.; Zhang, Z.; et al. Terahertz metalens of hyper-dispersion. Photon. Res. 2022, 10, 886–895. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Chiang, W.-F.; Shih, Y.-H.; Wei, W.-Y.; Su, J.-Y.; Huang, C.-Y. Folding metamaterials with extremely strong electromagnetic resonance. Photon. Res. 2022, 10, 2215–2222. [Google Scholar] [CrossRef]
- Xomalis, A.; Tsilipakos, O.; Manousidaki, M.; Pérez De Gregorio Busquets, O.; Kenanakis, G.; Tzortzakis, S.; Farsari, M.; Soukoulis, C.M.; Economou, E.N.; Kafesaki, M. Enhanced Refractive Index Sensing with Direction-Selective Three-Dimensional Infrared Metamaterials. ACS Appl. Opt. Mater. 2023, 1, 10–16. [Google Scholar] [CrossRef]
- Liu, R.; Ji, C.; Mock, J.J.; Chin, J.Y.; Cui, T.J.; Smith, D.R. Broadband Ground-Plane Cloak. Science 2009, 323, 366–369. [Google Scholar] [CrossRef]
- Gundogdu, T.F.; Gökkavas, M.; Güven, K.; Kafesaki, M.; Soukoulis, C.M.; Ozbay, E. Simulation and micro-fabrication of optically switchable split ring resonators. Photon. Nanostruct.-Fundam. Appl. 2007, 5, 106–112. [Google Scholar] [CrossRef]
- Soukoulis, C.M.; Koschny, T.; Zhou, J.; Kafesaki, M.; Economou, E.N. Magnetic response of split ring resonators at terahertz frequencies. Phys. Status Solidi 2007, 244, 1181–1187. [Google Scholar] [CrossRef]
- Dehning, K.J.; Hitzemann, M.; Gossmann, A.; Zimmermann, S. Split-Ring Resonator Based Sensor for the Detection of Amino Acids in Liquids. Sensors 2023, 23, 645. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.; Ghosh, S.; Lim, S. Low-Cost and Lightweight 3D-Printed Split-Ring Resonator for Chemical Sensing Applications. Sensors 2018, 18, 3049. [Google Scholar] [CrossRef] [PubMed]
- Ong, N.T.J.; Yee, S.K.; Ashyap, A.Y.I. Design of Microwave Sensor Based on Rectangular Double Split Ring Resonator for Water Quality Monitoring. In Proceedings of the 2020 IEEE Student Conference on Research and Development (SCOReD), Batu Pahat, Malaysia, 27–29 September 2020; pp. 111–116. [Google Scholar]
- Rivera-Lavado, A.; García-Lampérez, A.; Jara-Galán, M.-E.; Gallo-Valverde, E.; Sanz, P.; Segovia-Vargas, D. Low-Cost Electromagnetic Split-Ring Resonator Sensor System for the Petroleum Industry. Sensors 2022, 22, 3345. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Wang, D.-W.; Wang, J.; Wang, G.; Zhao, W.-S. An Improved Split-Ring Resonator-Based Sensor for Microfluidic Applications. Sensors 2022, 22, 8534. [Google Scholar] [CrossRef] [PubMed]
- Haq, T.; Ruan, C.; Ullah, S.; Fahad, A.K. Dual Notch Microwave Sensors Based on Complementary Metamaterial Resonators. IEEE Access 2019, 7, 153489–153498. [Google Scholar] [CrossRef]
- Falcone, F.; Lopetegi, T.; Laso, M.A.G.; Baena, J.D.; Bonache, J.; Beruete, M.; Marqués, R.; Martín, F.; Sorolla, M. Babinet Principle Applied to the Design of Metasurfaces and Metamaterials. Phys. Rev. Lett. 2004, 93, 197401. [Google Scholar] [CrossRef]
- Odabasi, H.; Teixeira, F.L.; Guney, D.O. Electrically small, complementary electric-field-coupled resonator antennas. J. Appl. Phys. 2013, 113, 84903. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Tasolamprou, A.C.; Mentzaki, D.; Viskadourakis, Z.; Economou, E.N.; Kafesaki, M.; Kenanakis, G. Flexible 3D Printed Conductive Metamaterial Units for Electromagnetic Applications in Microwaves. Materials 2020, 13, 3879. [Google Scholar] [CrossRef] [PubMed]
- Bonacchini, G.E.; Omenetto, F.G. Reconfigurable microwave metadevices based on organic electrochemical transistors. Nat. Electron. 2021, 4, 424–428. [Google Scholar] [CrossRef]
- Yee, S.K.; Ong, N.T.J.; Lim, S.C.J.; Mohd Zin, N.S.; Dahlan, S.H.; Ashyap, A.Y.I.; Soon, C.F. Microwave sensing of ammonia and iron concentration in water based on complementary double split-ring resonator. Sens. Actuators Rep. 2021, 3, 100044. [Google Scholar] [CrossRef]
- Ray, N.J.; Yoo, J.-H.; Nguyen, H.T.; Johnson, M.A.; Felgenbaum, E. Birefringent Glass-Engraved Tilted Pillar Metasurfaces for High Power Laser Applications. Adv. Sci. 2023, 2301111. [Google Scholar] [CrossRef]
- Mishra, M.; Ghosh, S.K.; Bhattacharyya, S. A multiband transmittive-type linear-to-circular polarization converter. In Proceedings of the 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), Jaipur, India, 13–16 December 2021; pp. 702–705. [Google Scholar]
- Zerrad, F.; Taouzari, M.; Makroum, E.M.; Aoufi, J.E.; Qanadli, S.D.; Karaaslan, M.; Al-Gburi, A.J.; Zakaria, Z. Microwave Imaging Approach for Breast Cancer Detection Using a Tapered Slot Antenna Loaded with Parasitic Components. Materials 2023, 16, 1496. [Google Scholar] [CrossRef]
- Viskadourakis, Z.; Sevastaki, M.; Kenanakis, G. 3D structured nanocomposites by FDM process: A novel approach for large-scale photocatalytic applications. Appl. Phys. A Mater. Sci. Process. 2018, 124, 585. [Google Scholar] [CrossRef]
- Aguirre-Cortés, J.M.; Moral-Rodríguez, A.I.; Bailón-García, E.; Davó-Quiñonero, A.; Pérez-Cadenas, A.F.; Carrasco-Marín, F. 3D printing in photocatalysis: Methods and capabilities for the improved performance. Appl. Mater. Today 2023, 32, 101831. [Google Scholar] [CrossRef]
- Mills, A.; Lee, S.-K. A web-based overview of semiconductor photochemistry-based current commercial applications. J. Photochem. Photobiol. A Chem. 2002, 152, 233–247. [Google Scholar] [CrossRef]
- Kenanakis, G.; Vasilopoulos, K.C.; Viskadourakis, Z.; Barkoula, N.-M.; Anastasiadis, S.H.; Kafesaki, M.; Economou, E.N.; Soukoulis, C.M. Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films. Appl. Phys. A 2016, 122, 802. [Google Scholar] [CrossRef]
- Viskadourakis, Z.; Tamiolakis, E.; Tsilipakos, O.; Tasolamprou, A.C.; Economou, E.N.; Kenanakis, G. 3D-Printed Metasurface Units for Potential Energy Harvesting Applications at the 2.4 GHz Frequency Band. Crystals 2021, 11, 1089. [Google Scholar] [CrossRef]
- Pavel, M.; Anastasescu, C.; State, R.-N.; Vasile, A.; Papa, F.; Balint, I. Photocatalytic Degradation of Organic and Inorganic Pollutants to Harmless End Products: Assessment of Practical Application Potential for Water and Air Cleaning. Catalysts 2023, 13, 380. [Google Scholar] [CrossRef]
- Bouranta, A.; Tudose, I.V.; Georgescu, L.; Karaiskou, A.; Vrithias, N.R.; Viskadourakis, Z.; Kenanakis, G.; Sfakaki, E.; Mitrizakis, N.; Strakantounas, G.; et al. 3D Printed Metal Oxide-Polymer Composite Materials for Antifouling Applications. Nanomaterials 2022, 12, 917. [Google Scholar] [CrossRef] [PubMed]
- Sevastaki, M.; Papadakis, V.M.; Romanitan, C.; Suchea, M.P.; Kenanakis, G. Photocatalytic Properties of Eco-Friendly ZnO Nanostructures on 3D-Printed Polylactic Acid Scaffolds. Nanomaterials 2021, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Katsarakis, N.; Kafesaki, M.; Tsiapa, I.; Economou, E.N.; Soukoulis, C.M. High transmittance left-handed materials involving symmetric split-ring resonators. Photon. Nanostruct. Fundam. Appl. 2007, 5, 149–155. [Google Scholar] [CrossRef]
- Alahnomi, R.A.; Zakaria, Z.; Yussof, Z.M.; Althuwayb, A.A.; Alhegazi, A.; Alsariera, H.; Rahman, N.A. Review of Recent Microwave Planar Resonator-Based Sensors: Techniques of Complex Permittivity Extraction, Applications, Open Challenges and Future Research Directions. Sensors 2021, 21, 2267. [Google Scholar] [CrossRef] [PubMed]
- Javed, A.; Arif, A.; Zubair, M.; Mehmood, M.Q.; Riaz, K. A Low-Cost Multiple Complementary Split-Ring Resonator-Based Microwave Sensor for Contactless Dielectric Characterization of Liquids. IEEE Sens. J. 2020, 20, 11326–11334. [Google Scholar] [CrossRef]
- Salim, A.; Lim, S. Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor. Sensors 2016, 16, 1802. [Google Scholar] [CrossRef] [PubMed]
- Haq, T.; Ruan, C.; Zhang, X.; Kosar, A.; Ullah, S. Low cost and compact wideband microwave notch filter based on miniaturized complementary metaresonator. Appl. Phys. A 2019, 125, 662. [Google Scholar] [CrossRef]
- Lee, C.-S.; Bai, B.; Song, Q.-R.; Wang, Z.-Q.; Li, G.-F. Open Complementary Split-Ring Resonator Sensor for Dropping-Based Liquid Dielectric Characterization. IEEE Sens. J. 2019, 19, 11880–11890. [Google Scholar] [CrossRef]
CSRR Name | L (mm) | w (mm) | g (mm) | V (mm3) |
---|---|---|---|---|
C1 | 9.9 ± 0.1 | 1.2 ± 0.1 | 0.7 ± 0.1 | 10.9 |
C2 | 9.9 ± 0.1 | 1.1± 0.1 | 1.2 ± 0.1 | 7.39 |
C3 | 9.9 ± 0.1 | 1.1± 0.1 | 2.2 ± 0.2 | 7.26 |
C4 | 7.9 ± 0.1 | 1.0 ± 0.1 | 1.2 ± 0.2 | 5.28 |
C5 | 7.9 ± 0.1 | 1.1 ± 0.1 | 1.1 ± 0.1 | 5.24 |
C6 | 7.9 ± 0.1 | 1.3 ± 0.1 | 1.0 ± 0.1 | 6.60 |
C10 | 8.0 ± 0.1 | 2.0 ± 0.1 | 1.2 ± 0.2 | 5.92 |
C11 | 6.5 ± 0.1 | 1.1 ± 0.1 | 1.3 ± 0.2 | 4.66 |
CSRR Name | fres (GHz) | Δf (MHz) | εwater | FWHM (MHz) | Q | S (%) | FoM (10−4) |
---|---|---|---|---|---|---|---|
C1 | 4.053 | 134 | 76.3 | 177 | 30.2 | 0.042 | 2.40 |
C2 | 3.627 | 97 | 77.0 | 40 | 90.7 | 0.034 | 8.57 |
C3 | 4.200 | 200 | 76.1 | 216 | 19.4 | 0.060 | 2.80 |
C4 | 5.080 | 400 | 74.7 | 147 | 34.5 | 0.099 | 6.74 |
C5 | 6.070 | 270 | 72.8 | 147 | 14.6 | 0.059 | 4.03 |
C6 | 5.490 | 526 | 74.0 | 487 | 11.3 | 0.120 | 2.46 |
C10 | 5.627 | 114 | 73.7 | 343 | 16.4 | 0.028 | 0.796 |
C11 | 7.643 | 863 | 69.2 | 1019 | 7.50 | 0.149 | 1.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viskadourakis, Z.; Fanourakis, G.; Tamiolakis, E.; Theodosi, A.; Katsara, K.; Vrithias, N.R.; Tsilipakos, O.; Kenanakis, G. Fabrication of mm-Scale Complementary Split Ring Resonators, for Potential Application as Water Pollution Sensors. Materials 2023, 16, 5290. https://doi.org/10.3390/ma16155290
Viskadourakis Z, Fanourakis G, Tamiolakis E, Theodosi A, Katsara K, Vrithias NR, Tsilipakos O, Kenanakis G. Fabrication of mm-Scale Complementary Split Ring Resonators, for Potential Application as Water Pollution Sensors. Materials. 2023; 16(15):5290. https://doi.org/10.3390/ma16155290
Chicago/Turabian StyleViskadourakis, Zacharias, George Fanourakis, Evangelos Tamiolakis, Anna Theodosi, Klytaimnistra Katsara, Nikolaos Rafael Vrithias, Odysseas Tsilipakos, and George Kenanakis. 2023. "Fabrication of mm-Scale Complementary Split Ring Resonators, for Potential Application as Water Pollution Sensors" Materials 16, no. 15: 5290. https://doi.org/10.3390/ma16155290
APA StyleViskadourakis, Z., Fanourakis, G., Tamiolakis, E., Theodosi, A., Katsara, K., Vrithias, N. R., Tsilipakos, O., & Kenanakis, G. (2023). Fabrication of mm-Scale Complementary Split Ring Resonators, for Potential Application as Water Pollution Sensors. Materials, 16(15), 5290. https://doi.org/10.3390/ma16155290