Corrosion Behavior of CrFeCoNiV0.5 and CrFeCoNiV Alloys in 0.5 M and 1 M Sodium Chloride Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murty, B.S.; Yeh, J.W.; Ranganathan, S.; Bhattacharjee, P.P. High-Entropy Alloys, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 13–30. [Google Scholar]
- Yeh, J.W. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Zhang, J.; Xin, S.; Zhang, Y.; Guo, P.; Sun, H.; Li, T.; Qin, C. Effects of Elements on the Microstructure and Mechanical Properties of AlCoCrFeNiTi High-Entropy Alloys. Metals 2023, 13, 178. [Google Scholar] [CrossRef]
- Lu, K.; Chauhan, A.; Tirunilai, A.S.; Freudenberger, J.; Kauffmann, A.; Heilmaier, M.; Aktaa, J. Deformation Mechanisms of CoCrFeMnNi High-Entropy Alloy Under Low-Cycle-Fatigue Loading. Acta Mater. 2021, 215, 117089. [Google Scholar] [CrossRef]
- Vaidya, M.; Gariapati, M.M.; Murty, B.S. High-Entropy Alloys by Mechanical Alloying: A Review. J. Mater. Res. 2019, 34, 664–686. [Google Scholar] [CrossRef]
- Shkodich, N.; Sedegov, A.; Kuskov, K.; Busurin, S.; Scheck, Y.; Vadchenko, S.; Moskovskikh, D. Refractory High-Entropy HfTaTiNbZr-Based Alloys by Combined Use of Ball Milling and Spark Plasma Sintering: Effect of Milling Intensity. Metals 2020, 10, 1268. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Z.L.; Xu, Z.Q.; Cheng, X.W. Designing VNbMoTa Refractory High-Entropy Alloys with Improved Properties for High-Temperature Applications. Scr. Mater. 2021, 191, 131–136. [Google Scholar] [CrossRef]
- Long, Y.; Su, K.; Zhang, J.; Liang, X.; Peng, H.; Li, X. Enhanced Strength of a Mechanical Alloyed NbMoTaWVTi Refractory High Entropy Alloy. Materials 2018, 11, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsau, C.H.; Tsai, M.C.; Wang, W.L. Microstructures of FeCoNiMo and CrFeCoNiMo Alloys, and the Corrosion Properties in 1 M Nitric Acid and 1 M Sodium Chloride Solutions. Materials 2022, 15, 888. [Google Scholar] [CrossRef] [PubMed]
- Geantă, V.; Voiculescu, I.; Cotrut, M.C.; Vrânceanu, M.D.; Vasile, I.M.; Rosca, J.C.M. Effect of Al on Corrosion Behavior in 3.5% NaCl Solution of AlxCoCrFeNi High Entropy Alloys. Int. J. Eng. Res. Afr. 2021, 53, 20–30. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Yi, H.; Qi, W.; Peng, Q. Effect of Molybdenum Additives on Corrosion Behavior of (CoCrFeNi)100−x Mo x High-Entropy Alloys. Entropy 2018, 20, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.Q.; Zhang, Y.X.; Wang, X.R.; Wang, Z.Q.; He, P. Microstructure and Corrosion Properties of AlCrxNiCu0.5Mo (x = 0, 0.5, 1.0, 1.5, 2.0) High Entropy Alloy Coatings on Q235 Steel by Electrospark—Computer Numerical Control Deposition. Mater. Lett. 2021, 292, 129642. [Google Scholar] [CrossRef]
- Brito-Garcia, S.; Mirza-Rosca, J.; Geanta, V.; Voiculescu, I. Mechanical and Corrosion Behavior of Zr-Doped High-Entropy Alloy from CoCrFeMoNi System. Materials 2023, 16, 1832. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Wang, H.; Chen, M.; Chen, Z.; Li, R.; Jin, P.; Zhang, Y. Mechanical Properties and Corrosion Resistance of NbTiAlSiZrNx High-Entropy Films Prepared by RF Magnetron Sputtering. Entropy 2019, 21, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muangtong, P.; Rodchanarowan, A.; Chaysuwan, D.; Chanlek, N.; Goodall, R. The Corrosion Behaviour of CoCrFeNi-x (x = Cu, Al, Sn) High Entropy Alloy Systems in Chloride Solution. Corros. Sci. 2020, 172, 108740. [Google Scholar] [CrossRef]
- Shimizu, H.; Yuasa, M.; Miyamoto, H.; Edalati, K. Corrosion Behavior of Ultrafine-Grained CoCrFeMnNi High-Entropy Alloys Fabricated by High-Pressure Torsion. Materials 2022, 15, 1007. [Google Scholar] [CrossRef] [PubMed]
- Tsau, C.H.; Yeh, C.Y.; Tsai, M.C. The Effect of Nb-Content on the Microstructures and Corrosion Properties of CrFeCoNiNbx High-Entropy Alloys. Materials 2019, 12, 3716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsau, C.H.; Chen, J.Y.; Chien, T.Y. Corrosion Behavior of CrFeCoNiVx (x = 0.5 and 1) High-Entropy Alloys in 1M Sulfuric Acid and 1M Hydrochloric Acid Solutions. Materials 2022, 15, 3639. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001; pp. 808–810. [Google Scholar]
- ASTM G150-99; Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels. ASTM International: West Conshohocken, PA, USA, 2010.
- Fontana, M.G. Corrosion Engineering, 3rd ed.; McGraw-Hill Book Co.: Singapore, 1987; p. 172. [Google Scholar]
Alloys (at.%) | Cr | Fe | Co | Ni | V |
---|---|---|---|---|---|
(wt.%) | |||||
CrFeCoNiV0.5 | |||||
nominal | 20.72 | 22.25 | 23.48 | 23.39 | 10.16 |
actual | 21.6 | 22.6 | 22.3 | 22.3 | 11.2 |
CrFeCoNiV | |||||
Nominal | 18.81 | 20.20 | 21.32 | 21.24 | 18.43 |
actual | 19.4 | 20.2 | 20.5 | 20.2 | 19.7 |
0.5 M NaCl | 1 M NaCl | |||
---|---|---|---|---|
30 °C | 60 °C | 30 °C | 60 °C | |
Ecorr (VSHE) | −0.79 | −0.67 | −0.55 | −0.49 |
icorr (μA/cm2) | 1.80 | 4.20 | 2.90 | 5.40 |
Epp (VSHE) | −0.60 | −0.53 | −0.12 | −0.17 |
icrit (μA/cm2) | 3.80 | 7.40 | 2.76 | 154 |
Epp2 (VSHE) * | −0.09 | 0.01 | N/A | N/A |
icrit2 (μA/cm2) * | 4.10 | 15.3 | N/A | N/A |
0.5 M NaCl | 1 M NaCl | |
---|---|---|
Rs (Ω) | 26 | 27 |
Rp (kΩ) | 517 | 164 |
0.5 M NaCl | 1 M NaCl | |||
---|---|---|---|---|
30 °C | 60 °C | 30 °C | 60 °C | |
Ecorr (VSHE) | −0.71 | −0.83 | −0.76 | −0.90 |
icorr (μA/cm2) | 3.50 | 4.00 | 5.00 | 6.00 |
Epp (VSHE) | −0.55 | N/A | −0.51 | N/A |
icrit (μA/cm2) | 9.30 | N/A | 17.1 | N/A |
0.5 M NaCl | 1 M NaCl | |
---|---|---|
Rs (Ω) | 14 | 20 |
Rp (kΩ) | 591 | 470 |
Applied Potential | CrFeCoNiV0.5 | CrFeCoNiV | ||
---|---|---|---|---|
(mVSHE) | 0.5 M NaCl | 1 M NaCl | 0.5 M NaCl | 1 M NaCl |
700 | 82 | 76 | 68 | 65 |
800 | 80 | 57 | 54 | 52 |
900 | 61 | 47 | 49 | 45 |
Alloys | 0.5 M NaCl (mm/y) | 1 M NaCl (mm/y) | ||
---|---|---|---|---|
30 °C | 60 °C | 30 °C | 60 °C | |
CrFeCoNiV0.5 | 0.016 | 0.026 | 0.038 | 0.048 |
CrFeCoNiV | 0.029 | 0.033 | 0.041 | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsau, C.-H.; Hsiao, H.-P.; Chien, T.-Y. Corrosion Behavior of CrFeCoNiV0.5 and CrFeCoNiV Alloys in 0.5 M and 1 M Sodium Chloride Solutions. Materials 2023, 16, 4900. https://doi.org/10.3390/ma16144900
Tsau C-H, Hsiao H-P, Chien T-Y. Corrosion Behavior of CrFeCoNiV0.5 and CrFeCoNiV Alloys in 0.5 M and 1 M Sodium Chloride Solutions. Materials. 2023; 16(14):4900. https://doi.org/10.3390/ma16144900
Chicago/Turabian StyleTsau, Chun-Huei, Hui-Ping Hsiao, and Tien-Yu Chien. 2023. "Corrosion Behavior of CrFeCoNiV0.5 and CrFeCoNiV Alloys in 0.5 M and 1 M Sodium Chloride Solutions" Materials 16, no. 14: 4900. https://doi.org/10.3390/ma16144900
APA StyleTsau, C.-H., Hsiao, H.-P., & Chien, T.-Y. (2023). Corrosion Behavior of CrFeCoNiV0.5 and CrFeCoNiV Alloys in 0.5 M and 1 M Sodium Chloride Solutions. Materials, 16(14), 4900. https://doi.org/10.3390/ma16144900