Compact and Polarization Insensitive Satellite Band Perfect Metamaterial Absorber for Effective Electromagnetic Communication System
Abstract
:1. Introduction
2. Design and Methodology
2.1. Structural Details of the Unit Cell
2.2. Design Methodology
3. Results and Discussion
3.1. Design Selection Technique
3.2. Parameter Studies of the Proposed PMA Unit Cell
- i.
- Width Changing Effect
- ii.
- Effect of Split Gap
- iii.
- Material Analysis
3.3. Results Validation
- i.
- Equivalent Electrical Circuit Simulation by ADS
- ii.
- Array Simulation
- iii.
- Prototype Fabrication and Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Ji, S.; Zhao, J.; Liu, Z.; Dai, H. Design and analysis of a polarization-independent and incident angle insensitive triple-band Metamaterial Absorber. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 138, 115131. [Google Scholar] [CrossRef]
- Seyedsharbaty, M.M.; Sadeghzadeh, R.A. Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load. Opt. Quantum Electron. 2017, 49, 221. [Google Scholar] [CrossRef]
- Heydari, S.; Jahangiri, P.; Sharifi, A.; Zarrabi, F.B.; Arezomand, A.S. Fractal broken cross with Jerusalem load absorber for multiband application with polarization independence. Microw. Opt. Technol. Lett. 2017, 59, 1942–1947. [Google Scholar] [CrossRef]
- Afsar, M.S.; Faruque, M.R.; Hossain, M.B. Holy cross-moon shaped dual band perfect metamaterial absorber for C-band application. Mater. Today Commun. 2022, 33, 104309. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef] [Green Version]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Wen, Q.-Y.; Zhang, H.-W.; Xie, Y.-S.; Yang, Q.-H.; Liu, Y.-L. Dual band terahertz metamaterial absorber: Design, fabrication, and characterization. Appl. Phys. Lett. 2009, 95, 241111. [Google Scholar] [CrossRef]
- Zhu, W.; Zhao, X.; Gong, B.; Liu, L.; Su, B. Optical metamaterial absorber based on leaf-shaped cells. Appl. Phys. A 2010, 102, 147–151. [Google Scholar] [CrossRef]
- Hu, C.; Zhao, Z.; Chen, X.; Luo, X. Realizing near-perfect absorption at visible frequencies. Opt. Express 2009, 17, 11039. [Google Scholar] [CrossRef]
- Liang, Y.; Koshelev, K.; Zhang, F.; Lin, H.; Lin, S.; Wu, J.; Kivshar, Y. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett. 2020, 20, 6351–6356. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Weng, Y.; Liu, J.; Guo, N.; Yu, Y.; Xiao, L. Dual-band perfect absorber for a mid-infrared photodetector based on a dielectric metal metasurface. Photonics Res. 2021, 9, 27–33. [Google Scholar] [CrossRef]
- Maier, T.; Brückl, H. Wavelength-tunable microbolometers with metamaterial absorbers. Opt. Lett. 2009, 34, 3012. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Li, R.; Liu, Y.; Yu, Z.; Yu, L.; Chen, L.; Liu, C.; Ma, R.; Ye, H. Ultra-narrow band Perfect absorber and its application as plasmonic sensor in the Visible Region. Nanoscale Res. Lett. 2017, 12, 2017. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Cheng, Z.; Mao, X.; Gong, R. Ultra-thin multi-band polarization-insensitive microwave metamaterial absorber based on multiple-order responses using a single resonator structure. Materials 2017, 10, 1241. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Yoo, Y.J.; Kim, K.W.; Rhee, J.Y.; Kim, Y.H.; Lee, Y.P. Dual Broadband Metamaterial Absorber. Opt. Express 2015, 23, 3861. [Google Scholar] [CrossRef]
- Al-Badri, K.S.; Cinar, A.; Kose, U.; Ertan, O.; Ekmekci, E. Monochromatic tuning of absorption strength based on angle-dependent closed-ring resonator-type metamaterial absorber. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 1060–1063. [Google Scholar] [CrossRef]
- Gu, S.; Su, B.; Zhao, X. Planar isotropic broadband metamaterial absorber. J. Appl. Phys. 2013, 114, 163702. [Google Scholar] [CrossRef]
- Bağmancı, M.; Akgöl, O.; Özaktürk, M.; Karaaslan, M.; Ünal, E.; Bakır, M. Polarization independent broadband metamaterial absorber for microwave applications. Int. J. RF Microw. Comput.-Aided Eng. 2018, 29, e21630. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.Q.; Nguyen, T.K.; Cao, T.N.; Nguyen, H.; Bach, L.G. Numerical study of a broadband metamaterial absorberusing a single split circle ring and lumped resistors for X-band applications. AIP Adv. 2020, 10, 035326. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, H.; Mou, N.; Chen, L.; Li, R.; Zhang, L. High performance broadband electromagnetic interference shielding optical window based on a metamaterial absorber. Opt. Express 2020, 28, 26836. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, L.; Wan, G.; Gao, M.; Hu, B. An ultra-thin triple-band metamaterial absorber with equivalent circuit analysis. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar]
- Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Mishra, Y.K. Toroidal metaphotonics and metadevices. Laser Photonics Rev. 2020, 14, 1900326. [Google Scholar] [CrossRef]
- Tong, H.; Xu, Y.Q.; Su, Y.W.; Wang, X.X. Theoretical study for fabricating elliptical subwavelength nanohole arrays by higher-order waveguide-mode interference. Results Phys. 2019, 14, 102460. [Google Scholar] [CrossRef]
- Qu, S.; Hou, Y.; Sheng, P. Conceptual-based design of an ultrabroadband microwave metamaterial absorber. Proc. Natl. Acad. Sci. USA 2021, 118, e2110490118. [Google Scholar] [CrossRef] [PubMed]
- Asgharian, R.; Zakeri, B.; Karimi, O. Modified hexagonal triple-band metamaterial absorber with wide-angle stability. AEU-Int. J. Electron. Commun. 2018, 87, 119–123. [Google Scholar] [CrossRef]
- CST Microwave Studio [Internet]. 2019. Available online: www.cst.com (accessed on 11 December 2018).
- Hossain, M.B.; Faruque, M.R.; Islam, S.S.; Islam, M.T. Modified double dumbbell-shaped split-ring resonator-based negative permittivity metamaterial for satellite communications with high effective medium ratio. Sci. Rep. 2021, 11, 19331. [Google Scholar] [CrossRef]
- Bakır, M.; Karaaslan, M.; Dincer, F.; Delihacioglu, K.; Sabah, C. Tunable perfect metamaterial absorber and sensor applications. J. Mater. Sci. Mater. Electron. 2016, 27, 12091–12099. [Google Scholar] [CrossRef]
- Afsar, S.U.; Faruque, M.R.; Hossain, M.J.; Khandaker, M.U.; Osman, H.; Alamri, S. Modified hexagonal split ring resonator based on an epsilon-negative metamaterial for triple-band Satellite Communication. Micromachines 2021, 12, 878. [Google Scholar] [CrossRef]
- Ahamed, E.; Faruque, M.R.; Mansor, M.F.; Islam, M.T. Polarization-dependent tunneled metamaterial structure with Enhanced Fields Properties for X-band application. Results Phys. 2019, 15, 102530. [Google Scholar] [CrossRef]
- Wartak, M.S.; Tsakmakidis, K.L.; Hess, O. Introduction to metamaterials. Phys. Can. 2011, 67, 30–34. [Google Scholar]
- Islam, M.R.; Islam, M.T.; Soliman, M.S.; Baharuddin, M.H.; Mat, K.; Moubark, A.M.; Almalki, S.H. Metamaterial based on an inverse double V loaded complementary square split ring resonator for radar and Wi-Fi Applications. Sci. Rep. 2021, 11, 21782. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Zhan, C.; Li, Z.; Liang, C. A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 241–244. [Google Scholar] [CrossRef]
- Deng, G.; Lv, K.; Sun, H.; Yang, J.; Yin, Z.; Li, Y.; Chi, B.; Li, X. An Ultrathin, triple-band metamaterial absorber with wide-incident-angle stability for conformal applications at X and ku frequency band. Nanoscale Res. Lett. 2020, 15, 217. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Gupta, A. A wrenched-square shaped polarization independent and wide angle stable ultra-thin metamaterial absorber for S-band, X-band and Ku-band applications. AEU-Int. J. Electron. Commun. 2021, 132, 153648. [Google Scholar] [CrossRef]
- Kalraiya, S.; Chaudhary, R.K.; Gangwar, R.K. Polarization independent triple band ultrathin conformal metamaterial absorber for C- and X-frequency bands. AEU-Int. J. Electron. Commun. 2021, 135, 153752. [Google Scholar] [CrossRef]
- Hossain, M.B.; Faruque, M.R.; Islam, M.T.; Singh, M.; Jusoh, M. Triple band microwave metamaterial absorber based on double E-shaped symmetric split ring resonators for EMI shielding and stealth applications. J. Mater. Res. Technol. 2022, 18, 1653–1668. [Google Scholar] [CrossRef]
- Shahid, M.; Shanmuganantham, T.; Kumar, S.A. Metamaterial absorber for L-band, S-band and C-band applications. Res. Sq. 2023, 1–9. [Google Scholar] [CrossRef]
- Islam, M.T.; Faruque, M.R.I.; Misran, N. Specific absorption rate analysis using metal attachment. Inf. MIDEM 2010, 40, 238–240. [Google Scholar]
- Martin, F.; Velez, P.; Karami-Horestani, A.; Medina, F.; Fumeaux, C. Metamaterial inspired balanced filters. Balanced Microw. Filters 2018, 353–371. [Google Scholar] [CrossRef]
- Paul, C.R. Inductance: Loop and Partial; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 978-0-470-46188-4. [Google Scholar]
- Yudistira, H.T.; Kananda, K. Design of wideband single-layer metamaterial absorber in the S-Band and C-band spectrum. Eur. Phys. J. Plus 2021, 136, 603. [Google Scholar] [CrossRef]
A | B | t | a | G | t1 | L1 | L2 | g | w |
---|---|---|---|---|---|---|---|---|---|
10 | 10 | 0.035 | 0.50 | 0.50 | 1.60 | 2.0 | 0.8 | 0.30 | 0.40 |
Reference No. | Design Shape | Unit Cell Size (mm2) | Covering Band | Frequency at Max. Absorption GHz | Max. Absorption (%) | Published Year |
---|---|---|---|---|---|---|
[34] | Dipole-based square ring | 11 × 11 | S- and X- | 10.90 | 90 | 2015 |
[35] | Spike-shaped | 8 × 8 | X- and Ku- | 17 | 90.90 | 2020 |
[36] | Wrenched square | 10.4 0 × 10.40 | S-, X-, Ku- | 11.15 | 97.69 | 2021 |
[37] | Jerusalem cross-shaped | 11.50 × 11.50 | C- and X- | 11.6 | 97 | 2021 |
[38] | Double E-shaped | 10 × 10 | C- and X- | 10.32 | 99.90 | 2022 |
[39] | Modified square-shaped | 35 × 32 | L-, S-, C- | 5.50 | 99 | 2023 |
Proposed PMA | CSRR bounded swastika-shaped | 10 × 10 | S- and C- | 3.03 | 99.84 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afsar, M.S.U.; Faruque, M.R.I.; Abdullah, S.; Al-Mugren, K.S. Compact and Polarization Insensitive Satellite Band Perfect Metamaterial Absorber for Effective Electromagnetic Communication System. Materials 2023, 16, 4776. https://doi.org/10.3390/ma16134776
Afsar MSU, Faruque MRI, Abdullah S, Al-Mugren KS. Compact and Polarization Insensitive Satellite Band Perfect Metamaterial Absorber for Effective Electromagnetic Communication System. Materials. 2023; 16(13):4776. https://doi.org/10.3390/ma16134776
Chicago/Turabian StyleAfsar, Md. Salah Uddin, Mohammad Rashed Iqbal Faruque, Sabirin Abdullah, and K. S. Al-Mugren. 2023. "Compact and Polarization Insensitive Satellite Band Perfect Metamaterial Absorber for Effective Electromagnetic Communication System" Materials 16, no. 13: 4776. https://doi.org/10.3390/ma16134776
APA StyleAfsar, M. S. U., Faruque, M. R. I., Abdullah, S., & Al-Mugren, K. S. (2023). Compact and Polarization Insensitive Satellite Band Perfect Metamaterial Absorber for Effective Electromagnetic Communication System. Materials, 16(13), 4776. https://doi.org/10.3390/ma16134776