Influence of Traps and Lorentz Force on Charge Transport in Organic Semiconductors
Abstract
:1. Introduction
2. Methodology for Device Modelling and Simulations
3. Results and Discussion
3.1. Effect of Traps on the Net Charge
3.2. Implications of the Magnetic Field on Net Charge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X.; Jing, W.; Meng, H.; Guo, Y.; Yu, L.; Li, R.; Peng, Q. Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells. Adv. Mater. 2023, 35, 2208997. [Google Scholar] [CrossRef]
- Wan, L.; Liu, Y.; Fuchter, M.J.; Yan, B. Anomalous circularly polarized light emission in organic light-emitting diodes caused by orbital–momentum locking. Nat. Photonics 2023, 17, 193–199. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Gao, C.; Ni, Z.; Zhang, X.; Hu, W.; Dong, H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem. Soc. Rev. 2023, 52, 1331–1381. [Google Scholar] [CrossRef]
- Desu, M.; Sharma, S.; Cheng, K.H.; Wang, Y.H.; Nagamatsu, S.; Chen, J.C.; Pandey, S.S. Controlling the molecular orientation of a novel diketopyrrolopyrrole-based organic conjugated polymer for enhancing the performance of organic field-effect transistors. Org. Electron. 2023, 113, 106691. [Google Scholar] [CrossRef]
- Tang, H.; Bai, Y.; Zhao, H.; Qin, X.; Hu, Z.; Zhou, C.; Huang, F.; Cao, Y. Interface Engineering for Highly Efficient Organic Solar Cells. Adv. Mater. 2023, 2212236. [Google Scholar] [CrossRef]
- Kuik, M.; Wetzelaer, G.J.A.; Nicolai, H.T.; Craciun, N.I.; De Leeuw, D.M.; Blom, P.W. 25th anniversary article: Charge transport and recombination in polymer light-emitting diodes. Adv. Mater 2014, 26, 512–531. [Google Scholar] [CrossRef]
- Tsai, M.J.; Meng, H.F. Electron traps in organic light-emitting diodes. J. Appl. Phys. 2005, 97, 114502. [Google Scholar] [CrossRef] [Green Version]
- Wetzelaer, G.; Kuik, M.; Nicolai, H.; Blom, P. Trap-assisted and Langevin-type recombination in organic light-emitting diodes. Phys. Rev. B 2011, 83, 165204. [Google Scholar] [CrossRef]
- Scholz, S.; Kondakov, D.; Lussem, B.; Leo, K. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 2015, 115, 8449–8503. [Google Scholar] [CrossRef] [PubMed]
- Penconi, M.; Cazzaniga, M.; Panzeri, W.; Mele, A.; Cargnoni, F.; Ceresoli, D.; Bossi, A. Unraveling the degradation mechanism in firpic-based blue OLEDs: II. Trap and detect molecules at the interfaces. Chem. Mater. 2019, 31, 2277–2285. [Google Scholar] [CrossRef] [Green Version]
- Street, R.; Schoendorf, M.; Roy, A.; Lee, J. Interface state recombination in organic solar cells. Phys. Rev. B 2010, 81, 205307. [Google Scholar] [CrossRef]
- Cowan, S.R.; Roy, A.; Heeger, A.J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.Y.; Bussolotti, F.; Qi, D.C.; Wang, R.; Kera, S.; Ueno, N.; Wee, A.T.S.; Chen, W. Mechanism of the Fermi level pinning at organic donor–acceptor heterojunction interfaces. Org. Electron. 2011, 12, 534–540. [Google Scholar] [CrossRef]
- Zhong, J.Q.; Mao, H.Y.; Wang, R.; Qi, D.C.; Cao, L.; Wang, Y.Z.; Chen, W. Effect of gap states on the orientation-dependent energy level alignment at the DIP/F16CuPc donor–acceptor heterojunction interfaces. J. Phys. Chem. C 2011, 115, 23922–23928. [Google Scholar] [CrossRef]
- Bussolotti, F.; Yang, J.; Hinderhofer, A.; Huang, Y.; Chen, W.; Kera, S.; Wee, A.T.; Ueno, N. Origin of the energy level alignment at organic/organic interfaces: The role of structural defects. Phys. Rev. B 2014, 89, 115319. [Google Scholar] [CrossRef]
- Rubel, O.; Baranovskii, S.; Stolz, W.; Gebhard, F. Exact solution for hopping dissociation of geminate electron-hole pairs in a disordered chain. Phys. Rev. Lett. 2008, 100, 196602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neukom, M.; Reinke, N.; Ruhstaller, B. Charge extraction with linearly increasing voltage: A numerical model for parameter extraction. Sol. Energy 2011, 85, 1250–1256. [Google Scholar] [CrossRef]
- Koster, L.J.; Smits, E.; Mihailetchi, V.; Blom, P.W. Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 2005, 72, 085205. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.; McNeill, C.R.; Greenham, N.C. Drift-diffusion modeling of photocurrent transients in bulk heterojunction solar cells. J. Appl. Phys. 2009, 106, 094506. [Google Scholar] [CrossRef]
- Neukom, M.T.; Züfle, S.; Ruhstaller, B. Reliable extraction of organic solar cell parameters by combining steady-state and transient techniques. Org. Electron. 2012, 13, 2910–2916. [Google Scholar] [CrossRef]
- MacKenzie, R.C.; Shuttle, C.G.; Chabinyc, M.L.; Nelson, J. Extracting microscopic device parameters from transient photocurrent measurements of P3HT: PCBM solar cells. Adv. Energy Mater. 2012, 2, 662–669. [Google Scholar] [CrossRef]
- Hanfland, R.; Fischer, M.A.; Brütting, W.; Würfel, U.; MacKenzie, R.C. The physical meaning of charge extraction by linearly increasing voltage transients from organic solar cells. Appl. Phys. Lett. 2013, 103, 063904. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.; Greenham, N.C. Modeling photocurrent transients in organic solar cells. Nanotechnology 2008, 19, 424012. [Google Scholar] [CrossRef] [PubMed]
- Rogel-Salazar, J.; Bradley, D.D.; Cash, J.; Demello, J. An efficient method-of-lines simulation procedure for organic semiconductor devices. Phys. Chem. Chem. Phys. 2009, 11, 1636–1646. [Google Scholar] [CrossRef] [PubMed]
- Schmidlin, F.W. Theory of trap-controlled transient photoconduction. Phys. Rev. B 1977, 16, 2362. [Google Scholar] [CrossRef]
- Juška, G.; Viliunas, M.; Klíma, O.; Šípek, E.; Kočka, J. New features in space-charge-limited-photocurrent transients. Philos. Mag. B 1994, 69, 277–289. [Google Scholar] [CrossRef]
- Juška, G.; Viliunas, M.; Arlauskas, K.; Kočka, J. Space-charge-limited photocurrent transients: The influence of bimolecular recombination. Phys. Rev. B 1995, 51, 16668. [Google Scholar] [CrossRef]
- Morab, S.; Sundaram, M.M.; Pivrikas, A. Time-Dependent Charge Carrier Transport with Hall Effect in Organic Semiconductors for Langevin and Non-Langevin Systems. Nanomaterials 2022, 12, 4414. [Google Scholar] [CrossRef]
- Pivrikas, A.; Juška, G.; Mozer, A.J.; Scharber, M.; Arlauskas, K.; Sariciftci, N.; Stubb, H.; Österbacka, R. Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials. Phys. Rev. Lett. 2005, 94, 176806. [Google Scholar] [CrossRef] [Green Version]
- Pivrikas, A.; Sariciftci, N.S.; Juška, G.; Österbacka, R. A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog. Photovolt. Res. Appl. 2007, 15, 677–696. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morab, S.; Sundaram, M.M.; Pivrikas, A. Influence of Traps and Lorentz Force on Charge Transport in Organic Semiconductors. Materials 2023, 16, 4691. https://doi.org/10.3390/ma16134691
Morab S, Sundaram MM, Pivrikas A. Influence of Traps and Lorentz Force on Charge Transport in Organic Semiconductors. Materials. 2023; 16(13):4691. https://doi.org/10.3390/ma16134691
Chicago/Turabian StyleMorab, Seema, Manickam Minakshi Sundaram, and Almantas Pivrikas. 2023. "Influence of Traps and Lorentz Force on Charge Transport in Organic Semiconductors" Materials 16, no. 13: 4691. https://doi.org/10.3390/ma16134691
APA StyleMorab, S., Sundaram, M. M., & Pivrikas, A. (2023). Influence of Traps and Lorentz Force on Charge Transport in Organic Semiconductors. Materials, 16(13), 4691. https://doi.org/10.3390/ma16134691