Sustainable and Elastic Carbon Aerogel by Polydimethylsiloxane Coating for Organic Solvent Absorption and Potential Application for Sensors (Infections, Environmental, Wearable Sensors, etc.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Carbon Aerogel from Waste Paper
2.3. Preparation of PDMS Coated Carbon Aerogel (Aerogel@PDMS)
2.4. Characterization of Aerogel@PDMS
2.5. Absorption Capacity of Aerogel@PDMS
3. Results and Discussions
3.1. Fabrication of Aerogel@PDMS via Microwave Heating
3.2. Characterization of Aerogel@PDMS
3.3. Aerogel@PDMS for Organic Solvents Absorbent and Regeneration Test
3.4. Comparison of Different Aerogels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; Ye, W.; Xi, J.; Chu, Y.; Xiao, H.; Wu, W. Ultralight and shape recovery bio-based aerogel for oil-water separation. J. Environ. Chem. Eng. 2022, 10, 108822. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Z.; Liu, Q.; Tong, Q.; Wang, B. Fabrication of PDMS@Fe3O4/MS Composite materials and its application for oil-eater separation. Materials 2022, 15, 115. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Fu, Q.; Liu, H.; Gu, H.; Guo, Z. Solvent-free nano alumina loaded nano cellulose aerogel for efficient oil and organic solvent adsorption. J. Colloid Interface Sci. 2021, 581, 299–306. [Google Scholar] [CrossRef]
- Liu, H.; Geng, B.; Chen, Y.; Wang, H. Review on the aerogel-type oil sobents derived from nanocellulose. ACS Sustain. Chem. Eng. 2017, 5, 46–66. [Google Scholar]
- Gong, Q.; Yu, L.; Ding, J.; Zhang, S.; Bo, Y.; Chi, K.; Wang, H.; Xia, Q.; He, S.; Li, H. Separation of naphtha on a series of ultramicroporous MOFs: A comparative study with zeolites. Sep. Purif. Technol. 2022, 294, 121219. [Google Scholar] [CrossRef]
- Grela, A.; Kuc, J.; Bajda, T. A Review on the Application of Zeolites and Mesoporous silica materials in the removal of non-steroidal anti-inflammatory drugs and antibiotics from eater. Materials 2021, 14, 4994. [Google Scholar] [CrossRef]
- Fouad, D.; Andra, S.; Kommineni, N.; Balu, S.K.; Bulusu, R.; Boseila, A.A.; Akamo, D.O.; Ahmad, Z.; Khan, F.; Rahman, H.; et al. Recent advances in adsorptive nanocomposite membranes for heavy metals ion removal from contaminated water: A comprehensive review. Materials 2022, 15, 5392. [Google Scholar]
- Wu, M.; Huang, S.; Liu, C.; Wu, J.; Agarwal, S.; Greiner, A. Carboxylated wood-based sponges with under solil superhydrophilicity for deep dehydration of crude oil. J. Mater. Chem. A 2020, 8, 11354–11361. [Google Scholar] [CrossRef]
- Kong, H.; Chen, Y.; Yang, G.; Liu, B.; Guo, L.; Wang, Y.; Zhou, X.; Wei, G. Two-dimensional material-based functional aerogels for treating hazards in the environment: Synthesis, functional tailoring, applications, and sustainability analysis. Nanoscale Horiz. 2022, 7, 112–140. [Google Scholar] [CrossRef]
- Sun, S.; Yan, Q.; Wu, M.; Zhao, X. Carbon aerogel based materials for secondary batteries. Sustain. Mater. Technol. 2021, 30, e00342. [Google Scholar] [CrossRef]
- Xu, J. Three dimensional carbon aerogel for microwave absorption from chitosan. Synth. Met. 2023, 295, 117352. [Google Scholar] [CrossRef]
- Tang, Z.; Lim, S.; Pang, Y.; Ong, H.; Lee, K. Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review. Renew. Sustain. Energy Rev. 2018, 92, 235–253. [Google Scholar] [CrossRef]
- Pham, T.H.; Jung, S.H.; Kim, Y.J.; Kim, T. Adsorptive removal and recovery of organic pollutants from wastewater using waste paper-derived carbon-based aerogel. Chemosphere 2021, 268, 129319. [Google Scholar] [CrossRef] [PubMed]
- Vazhayal, L.; Wilson, P.; Prabhakaran, K. Waste to wealth: Lightweight, mechanically strong and conductive carbon aerogels from waste tissue paper for electromagnetic shielding and CO2 adsorption. Chem. Eng. J. 2020, 381, 122628. [Google Scholar] [CrossRef]
- Luo, Y.; Ye, Z.; Liao, S.; Wang, F.; Shao, J. Mechanically tunable spongy graphene/cellulose nanocrystals hybrid aerogel by atmospheric drying and its adsorption applications. Materials 2021, 14, 5961. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Zeng, J.; Wang, B.; Cheng, Z.; Xu, J.; Gao, W.; Chen, K. Mechanically flexible carbon aerogel with wavy layers and springboard elastic supporting structure for selective oil/organic solvent recovery. ACS Appl. Mater. Interfaces 2021, 13, 15910–15924. [Google Scholar] [CrossRef]
- Yi, L.; Yang, J.; Fang, X.; Xia, Y.; Zhao, L.; Wu, H.; Guo, S. Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from Water. J. Hazard. Mater. 2020, 385, 121507. [Google Scholar] [CrossRef]
- Gonzales, R.R.; Kato, N.; Awaji, H.; Matsuyama, H. Development of polydimethylsiloxane composite membrane for organic solvent separation. Sep. Purif. Technol. 2022, 285, 120369. [Google Scholar] [CrossRef]
- Choi, S.; Kwon, T.; Im, H.; Moon, D.; Baek, D.J.; Seol, M.; Duarte, J.P.; Choi, Y. A Polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl. Mater. Interfaces 2011, 3, 4552–4556. [Google Scholar] [CrossRef]
- Tong, H.; Chen, H.; Zhao, Y.; Liu, M.; Cheng, Y.; Lu, Y.; Tao, Y.; Du, J.; Wang, H. Robust PDMS-based porous sponge with enhanced recyclability for selective separation of oil-water mixture. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129228. [Google Scholar] [CrossRef]
- Chun, Y.; Lee, S.K.; Yoo, H.Y.; Kim, S.W. Recent advancements in biochar production according to feedstock classification, pyrolysis conditions, and applications: A review. Bioresources 2021, 16, 6512–6547. [Google Scholar] [CrossRef]
- Kappe, C.O. Controlled Microwave Heating in Modern Organic Synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250–6284. [Google Scholar] [CrossRef]
- Hayes, B.L. Microwave Synthesis: Chemistry at the Speed of Light; CEM Publishing: Matthews, NC, USA, 2002. [Google Scholar]
- Zhang, A.; Chen, M.; Du, C.; Guo, H.; Bai, H.; Li, L. Poly(dimethylsiloxane) Oil absorbent with a three-dimensionally interconnected porous structure and swellable Skeleton. ACS Appl. Mater. Interfaces 2013, 5, 10201–10206. [Google Scholar] [CrossRef]
- Choi, W.; Choi, J.; Yu, C. Ultrafast nanoscale polymer coating on porous 3D structures using microwave irradiation. Adv. Funct. Mater. 2017, 28, 1704877. [Google Scholar] [CrossRef]
- Schwenke, A.M.; Hoeppener, S.; Schubert, U.S. Synthesis and modification of carbon nanomaterials utilizing nicrowave heating. Adv. Mater. 2015, 27, 4113–4141. [Google Scholar] [CrossRef]
- Menendez, J.A.; Arenillas, A.; Fidalgo, B.; Fernandez, Y.; Zubizarreta, L.; Calvo, E.G.; Bermudez, J.M. Microwave heating processes involving carbon materials. Fuel Process. Technol. 2010, 91, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Muzyka, R.; Drewniak, S.; Pustelny, T.; Chrubasik, M.; Gryglewixz, G. Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using raman spectroscopy. Materials 2018, 11, 1050. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Ge, M.; Huang, J.; Li, S.; Deng, S.; Zhang, S.; Chen, Z.; Zhang, K.; Al-Deyab, S.S.; Lai, Y. Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation. J. Mater. Chem. A 2016, 4, 12179–12187. [Google Scholar] [CrossRef]
- Jia, D.; Wang, K.; Huang, J. Filter paper derived nanofibrous silica-carbon composite as anodic material with enhanced lithium storage performance. Chem. Eng. J. 2017, 317, 673–686. [Google Scholar] [CrossRef]
- Nour, M.; Berean, K.; Balendhran, S.; Ou, J.Z.; Plessis, J.D.; McSweeney, C.; Bhasharan, M.; Sriram, S.; Kalantar-zadeh, K. CNT/PDMS composite membranes for H2 and CH4 gas separation. Int. J. Hydrogen Energy 2013, 38, 10494–10501. [Google Scholar] [CrossRef] [Green Version]
- Maji, D.; Lahiri, S.K.; Das, S. Study of hydrophilicity and stability of chemically modified PDMS surface sing piranha and KOH solution. Surf. Interface Anal. 2011, 44, 62–69. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, S.; Sharma, P.; Gupta, A.; Sapra, G. Density functional theory and experimental investigations of MWCNT-PDMS based triboelectric nanogenerator. Mater. Today Commun. 2022, 33, 104742. [Google Scholar] [CrossRef]
- Paul, J.; Ahankari, S.A. Nanocellulose-based aerogels for water purification: A review. Carbohydr. Polym. 2023, 309, 120677. [Google Scholar] [CrossRef]
- Luo, R.; Cui, Y.; Li, H.; Wu, Y.; Du, B.; Zhou, S.; Hu, J. Fragmented Graphene Aerogel/Polydimethylsiloxane Sponges for Wearable Piezoresistive Pressure Sensors. ACS Appl. Nano Mater. 2023, 6, 7065–7076. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Lei, Q.; Fang, X.; Xie, H.; Yu, W. Tightly-packed fluorinated graphene aerogel/polydimethylsiloxane composite with excellent thermal management properties. Compos. Sci. Technol. 2022, 220, 109302. [Google Scholar] [CrossRef]
- Oner, E.; Ozturk, A.; Yurtcan, A.B. Utilization of the graphene aerogel as PEM fuel cell catalyst support: Effect of polypyrrole (PPy) and polydimethylsiloxane (PDMS) addition. Int. J. Hydrogen Energy 2020, 45, 34818–34836. [Google Scholar] [CrossRef]
- Pawar, A.A.; Kim, A.; Kim, H. Synthesis and performance evaluation of plastic waste aerogel as sustainable and reusable oil absorbent. Environ. Pollut. 2021, 288, 117717. [Google Scholar] [CrossRef]
- Sai, H.; Fu, R.; Xing, L.; Xiang, J.; Li, Z.; Li, F.; Zhang, T. Surface modification of bacterial cellulose aerogels’ web-like skeleton for Oil/Water separation. ACS Appl. Mater. Interfaces 2015, 7, 7373–7381. [Google Scholar] [CrossRef]
- Yang, J.; Xia, Y.; Xu, P.; Chen, B. Super-elastic and highly hydrophobic/super oleophilic sodium alginate/cellulose aerogel for oil/water separation. Cellulose 2018, 25, 3533–3544. [Google Scholar] [CrossRef]
- Li, W.; Li, Z.; Wang, W.; Li, Z.; Li, Q.; Qin, C.; Cao, F. Green approach to facilely design hydrophobic aerogel directly from bagasse. Ind. Crops Prod. 2021, 172, 113957. [Google Scholar] [CrossRef]
- Loh, J.W.; Goh, X.Y.; Nguyen, P.T.T.; Thai, Q.B.; Ong, Z.Y.; Duong, H.M. Advanced Aerogels from Wool Waste Fibers for Oil Spill Cleaning Applications. J. Polym. Environ. 2022, 30, 681–694. [Google Scholar] [CrossRef]
Aerogel | Density (mg/cm3) | Water Contact Angle (Degrees) | Absorption Capacity (g/g) | Reusability (during 10 Times) | Ref. |
---|---|---|---|---|---|
Plastic waste-based aerogel | 311 | 145.9 | 27.43 | 70% | [38] |
Cellulose aerogel | 6.77 | 146.5 | 185 | 99% | [39] |
Alginate/cellulose aerogel | - | 148.7 | 34 times | 99% | [40] |
Bagasse-based aerogel | 47.3 | 148 | 38.76 | 50% | [41] |
Wool waste fiber-based aerogel | 4 | 138 | 36.2 | - | [42] |
Aerogel@PDMS | 59 | 125 | 8.7 | 100% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chun, Y.; Kim, E.-H.; Lee, C.-S.; Chang, H.; Kang, C.-S. Sustainable and Elastic Carbon Aerogel by Polydimethylsiloxane Coating for Organic Solvent Absorption and Potential Application for Sensors (Infections, Environmental, Wearable Sensors, etc.). Materials 2023, 16, 4560. https://doi.org/10.3390/ma16134560
Chun Y, Kim E-H, Lee C-S, Chang H, Kang C-S. Sustainable and Elastic Carbon Aerogel by Polydimethylsiloxane Coating for Organic Solvent Absorption and Potential Application for Sensors (Infections, Environmental, Wearable Sensors, etc.). Materials. 2023; 16(13):4560. https://doi.org/10.3390/ma16134560
Chicago/Turabian StyleChun, Youngsang, Eui-Hwa Kim, Chae-Seok Lee, Hojong Chang, and Chan-Sol Kang. 2023. "Sustainable and Elastic Carbon Aerogel by Polydimethylsiloxane Coating for Organic Solvent Absorption and Potential Application for Sensors (Infections, Environmental, Wearable Sensors, etc.)" Materials 16, no. 13: 4560. https://doi.org/10.3390/ma16134560
APA StyleChun, Y., Kim, E.-H., Lee, C.-S., Chang, H., & Kang, C.-S. (2023). Sustainable and Elastic Carbon Aerogel by Polydimethylsiloxane Coating for Organic Solvent Absorption and Potential Application for Sensors (Infections, Environmental, Wearable Sensors, etc.). Materials, 16(13), 4560. https://doi.org/10.3390/ma16134560