Thermoelectric Properties of n-Type Bi4O4SeX2 (X = Cl, Br)
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, B.; Zhao, L. Moving fast makes for better cooling. Science 2022, 378, 832–833. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef]
- Heremans, J.P.; Wiendlocha, B.; Chamoire, A.M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 2012, 5, 5510–5530. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Zhao, L.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V.P.; et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144. [Google Scholar] [CrossRef]
- Su, L.; Wang, D.; Wang, S.; Qin, B.; Wang, Y.; Qin, Y.; Jin, Y.; Chang, C.; Zhao, L. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 2022, 375, 1385–1389. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Bai, S.Q.; Pei, Y.Z.; Chen, L.D.; Zhang, W.Q.; Zhao, X.Y.; Yang, J. Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12. Acta Mater. 2009, 57, 3135–3139. [Google Scholar] [CrossRef]
- Qiu, Y.; Xi, L.; Shi, X.; Qiu, P.; Zhang, W.; Chen, L.; Salvador, J.R.; Cho, J.Y.; Yang, J.; Chien, Y.; et al. Charge-Compensated Compound Defects in Ga-containing Thermoelectric Skutterudites. Adv. Funct. Mater. 2013, 23, 3194–3203. [Google Scholar] [CrossRef]
- Pan, Y.; Yao, M.; Hong, X.; Zhu, Y.; Fan, F.; Imasato, K.; He, Y.; Hess, C.; Fink, J.; Yang, J.; et al. Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance. Energy Environ. Sci. 2020, 13, 1717–1724. [Google Scholar] [CrossRef]
- Wang, X.W.; Lee, H.; Lan, Y.C.; Zhu, G.H.; Joshi, G.; Wang, D.Z.; Yang, J.; Muto, A.J.; Tang, M.Y.; Klatsky, J.; et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 2008, 93, 193121. [Google Scholar] [CrossRef]
- Xie, W.; He, J.; Kang, H.J.; Tang, X.; Zhu, S.; Laver, M.; Wang, S.; Copley, J.R.; Brown, C.M.; Zhang, Q.; et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. Nano Lett. 2010, 10, 3283–3289. [Google Scholar] [CrossRef] [PubMed]
- Toberer, E.S.; Zevalkink, A.; Snyder, G.J. Phonon engineering through crystal chemistry. J. Mater. Chem. 2011, 21, 15843–15852. [Google Scholar] [CrossRef]
- Biswas, K.; He, J.; Blum, I.D.; Wu, C.I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef]
- Jiang, B.; Yu, Y.; Cui, J.; Liu, X.; Xie, L.; Liao, J.; Zhang, Q.; Huang, Y.; Ning, S.; Jia, B.; et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Roychowdhury, S.; Ghosh, T.; Arora, R.; Samanta, M.; Xie, L.; Singh, N.K.; Soni, A.; He, J.; Waghmare, U.V.; Biswas, K. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 2021, 371, 722–727. [Google Scholar] [CrossRef]
- Wang, J.; Hu, W.; Lou, Z.; Xu, Z.; Yang, X.; Wang, T.; Lin, X. Thermoelectric properties of Bi2O2Se single crystals. Appl. Phys. Lett. 2021, 119, 081901. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Liu, R.; Zhou, Z.; Liu, C.; Lan, J.; Zhang, Q.; Lin, Y.; Nan, C. Synergistical Enhancement of Thermoelectric Properties in n-Type Bi2O2Se by Carrier Engineering and Hierarchical Microstructure. Adv. Energy Mater. 2019, 9, 1900354. [Google Scholar] [CrossRef]
- Newnham, J.A.; Zhao, T.; Gibson, Q.D.; Manning, T.D.; Zanella, M.; Mariani, E.; Daniels, L.M.; Alaria, J.; Claridge, J.B.; Cora, F.; et al. Band Structure Engineering of Bi4O4SeCl2 for Thermoelectric Applications. ACS Org. Inorg. Au 2022, 2, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557. [Google Scholar] [CrossRef]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Witting, I.T.; Chasapis, T.C.; Ricci, F.; Peters, M.; Heinz, N.A.; Hautier, G.; Snyder, G.J. The Thermoelectric Properties of Bismuth Telluride. Adv. Electron. Mater. 2019, 5, 1800904. [Google Scholar] [CrossRef]
- Zhao, X.B.; Ji, X.H.; Zhang, Y.H.; Zhu, T.J.; Tu, J.P.; Zhang, X.B. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 2005, 86. [Google Scholar] [CrossRef]
- Wu, J.K.; Hofmann, M.; Hsieh, W.P.; Chen, S.H.; Yen, Z.L.; Chiu, S.K.; Luo, Y.R.; Chiang, C.C.; Huang, S.Y.; Chang, Y.H.; et al. Enhancing Thermoelectric Properties of 2D Bi2Se3 by 1D Texturing with Graphene. ACS Appl. Energy Mater. 2019, 2, 8411–8415. [Google Scholar] [CrossRef]
- N-type flexible Bi2Se3 nanosheets/SWCNTs composite films with improved thermoelectric performance for low-grade waste-heat harvesting. Nano Energy 2022, 104, 107907. [CrossRef]
- Pan, L.; Liu, W.; Zhang, J.; Shi, X.; Gao, H.; Liu, Q.; Shen, X.; Lu, C.; Wang, Y.; Chen, Z. Synergistic effect approaching record-high figure of merit in the shear exfoliated n-type Bi2O2−2xTe2xSe. Nano Energy 2020, 69, 104394. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.; Zhu, Y.; Liu, Y.; Li, F.; Yu, M.; Liu, D.; Xu, W.; Lin, Y.; Nan, C. Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO via a Dual-Doping Approach. Adv. Energy Mater. 2016, 6, 1502423. [Google Scholar] [CrossRef]
- Pan, L.; Lang, Y.; Zhao, L.; Berardan, D.; Amzallag, E.; Xu, C.; Gu, Y.; Chen, C.; Zhao, L.; Shen, X.; et al. Realization of n-type and enhanced thermoelectric performance of p-type BiCuSeO by controlled iron incorporation. J. Mater. Chem. A 2018, 6, 13340–13349. [Google Scholar] [CrossRef]
- Li, J.; Sui, J.; Pei, Y.; Barreteau, C.; Berardan, D.; Dragoe, N.; Cai, W.; He, J.; Zhao, L. A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci. 2012, 5, 8543. [Google Scholar] [CrossRef]
- Ren, G.; Wang, S.; Zhu, Y.; Ventura, K.J.; Tan, X.; Xu, W.; Lin, Y.; Yang, J.; Nan, C. Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling. Energy Environ. Sci. 2017, 10, 1590–1599. [Google Scholar] [CrossRef]
- Gibson, Q.D.; Manning, T.D.; Zanella, M.; Zhao, T.; Murgatroyd, P.A.E.; Robertson, C.M.; Jones, L.A.H.; McBride, F.; Raval, R.; Cora, F.; et al. Modular Design via Multiple Anion Chemistry of the High Mobility van der Waals Semiconductor Bi4O4SeCl2. J. Am. Chem. Soc. 2020, 142, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Gibson, Q.D.; Zhao, T.; Daniels, L.M.; Walker, H.C.; Daou, R.; Hebert, S.; Zanella, M.; Dyer, M.S.; Claridge, J.B.; Slater, B.; et al. Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch. Science 2021, 373, 1017–1022. [Google Scholar] [CrossRef]
- Ji, R.; Lei, M.; Genevois, C.; Zhang, W.; Ming, X.; He, L.; Allix, M.; Yin, C.; Kuang, X.; Xing, X. Multiple Anion Chemistry for Ionic Layer Thickness Tailoring in (X= Cl, Br) van der Waals Semiconductors with Low Thermal Conductivities. Chem. Mater. 2022, 34, 4751–4764. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Wang, V.; Xu, N.; Liu, J.C.; Tang, G.; Geng, W.T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Peng, W.; Petretto, G.; Rignanese, G.; Hautier, G.; Zevalkink, A. An Unlikely Route to Low Lattice Thermal Conductivity: Small Atoms in a Simple Layered Structure. Joule 2018, 2, 1879–1893. [Google Scholar] [CrossRef]
- Gibson, Q.; Newnham, J.; Dyer, M.; Robertson, C.; Zanella, M.; Surta, T.; Daniels, L.; Alaria, J.; Claridge, J.; Rosseinsky, M. Expanding multiple anion superlattice chemistry: Synthesis, structure and properties of Bi4O4SeBr2 and Bi6O6Se2Cl2. J. Solid State Chem. 2022, 312, 123246. [Google Scholar] [CrossRef]
- Huang, C.; Yu, H. Two-dimensional Bi2O2Se with high mobility for high-performance polymer solar cells. ACS Appl. Mater. Interfaces 2020, 12, 19643–19654. [Google Scholar] [CrossRef]
- Pan, L.; Shi, X.L.; Song, C.C.; Liu, W.D.; Sun, Q.; Lu, C.H.; Liu, Q.F.; Wang, Y.F.; Chen, Z.G. Graphite Nanosheets as Multifunctional Nanoinclusions to Boost the Thermoelectric Performance of the Shear-Exfoliated Bi2O2Se. Adv. Funct. Mater. 2022, 32, 2202927. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, Z.; Sun, Z.; Zhang, Q.; Wei, P.; Mu, X.; Zhou, H.; Li, C.; Ma, S.; He, D.; et al. Superparamagnetic enhancement of thermoelectric performance. Nature 2017, 549, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Liu, L.; Wang, D.; Zhong, Y.; Hu, C. Electronic, Optical, Mechanical and Lattice Dynamical Properties of MgBi2O6: A First-Principles Study. Appl. Sci. 2019, 9, 1267. [Google Scholar] [CrossRef]
- Duan, Y.; Sun, Y.; Peng, M.; Zhou, S. Anisotropic elastic properties of the Ca-Pb compounds. J. Alloys Compd. 2014, 595, 14. [Google Scholar] [CrossRef]





| Samples | Label | c (Å) | a (Å) | |||
|---|---|---|---|---|---|---|
| BiOSeBr | x = 0 | 46 | 0.035 | 28.249 | 3.941 | 0.118 |
| BiOSeBr | x = 0.02 | 48 | 0.035 | 28.239 | 3.938 | 0.167 |
| BiOSeBr | x = 0.03 | 50 | 0.025 | 28.237 | 3.937 | 0.157 |
| BiOSeBr | x = 0.10 | 59 | 0.048 | 28.230 | 3.936 | 0.077 |
| BiOSeBr | x = 0.20 | 64 | 0.042 | 28.225 | 3.934 | 0.063 |
| BiOSeCl | x = 0 | 0.45 | 0.181 | 27.073 | 3.907 | 0.089 |
| BiOSeCl | x = 0.03 | 3.2 | 0.054 | 27.065 | 3.906 | 0.161 |
| BiOSeCl | x = 0.10 | 14 | 0.022 | 27.059 | 3.902 | 0.092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Hu, W.; Lou, Z.; Xu, Z.; Yang, X.; Le, T.; Wang, J.; Lin, X. Thermoelectric Properties of n-Type Bi4O4SeX2 (X = Cl, Br). Materials 2023, 16, 4329. https://doi.org/10.3390/ma16124329
Wang T, Hu W, Lou Z, Xu Z, Yang X, Le T, Wang J, Lin X. Thermoelectric Properties of n-Type Bi4O4SeX2 (X = Cl, Br). Materials. 2023; 16(12):4329. https://doi.org/10.3390/ma16124329
Chicago/Turabian StyleWang, Tao, Wanghua Hu, Zhefeng Lou, Zhuokai Xu, Xiaohui Yang, Tian Le, Jialu Wang, and Xiao Lin. 2023. "Thermoelectric Properties of n-Type Bi4O4SeX2 (X = Cl, Br)" Materials 16, no. 12: 4329. https://doi.org/10.3390/ma16124329
APA StyleWang, T., Hu, W., Lou, Z., Xu, Z., Yang, X., Le, T., Wang, J., & Lin, X. (2023). Thermoelectric Properties of n-Type Bi4O4SeX2 (X = Cl, Br). Materials, 16(12), 4329. https://doi.org/10.3390/ma16124329

