Molecular Dynamics Study on the Mechanism of Gallium Nitride Radiation Damage by Alpha Particles
Abstract
1. Introduction
2. Simulation Method
3. Results and Analysis
3.1. Simulation of Radiation Damage in GaN by Single α-Particle Irradiation
3.2. Radiation Damage Simulation of Multiple α-Particle Cumulative Irradiation on GaN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sternberg, D.; Essmiller, J.; Colley, C.; Klesh, A.; Krajewski, J. Attitude Control System for the Mars Cube One Spacecraft. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019. [Google Scholar]
- Kodheli, O.; Lagunas, E.; Maturo, N.; Sharma, S.K.; Shankar, B.; Montoya, J.; Duncan, J.; Spano, D.; Chatzinotas, S.; Kisseleff, S. Satellite Communications in the New Space Era: A Survey and Future Challenges. IEEE Commun. Surv. Tutor. 2020, 23, 70–109. [Google Scholar] [CrossRef]
- Wada, Y.; Mizobata, H.; Nozaki, M.; Kobayashi, T.; Hosoi, T.; Kachi, T.; Shimura, T.; Watanabe, H. Insight into interface electrical properties of metal–oxide–semiconductor structures fabricated on Mg-implanted GaN activated by ultra-high-pressure annealing. Appl. Phys. Lett. 2022, 120, 082103. [Google Scholar] [CrossRef]
- Herriman, J.E.; Hellman, O.; Fultz, B. Phonon thermodynamics and elastic behavior of GaN at high temperatures and pressures. Phys. Rev. B 2018, 98, 214105. [Google Scholar] [CrossRef]
- Kato, N.; Sugiyama, M. Electron irradiation resistance of NiO/ZnO visible-light-transparent solar cells. Jpn. J. Appl. Phys. 2020, 59, 101004. [Google Scholar] [CrossRef]
- Geremew, A.K.; Kargar, F.; Zhang, E.X.; Zhao, S.E.; Aytan, E.; Bloodgood, M.A.; Salguero, T.T.; Rumyantsev, S.; Fedoseyev, A.; Fleetwood, D.M. Proton-irradiation-immune electronics implemented with two-dimensional charge-density-wave devices. Nanoscale 2019, 11, 8380–8386. [Google Scholar] [CrossRef] [PubMed]
- He, B.W.; He, C.H.; Shen, S.S.; Chenyuan, M.L. Geant4 Simulation of Proton Displacement Damage in GaN. At. Energy Sci. Technol. 2017, 51, 543–548. [Google Scholar]
- He, H.; He, C.; Zhang, J.; Liao, W.; Zang, H.; Li, Y.; Liu, W. Primary damage of 10keVGaPKA in bulk GaN material under different temperatures. Nucl. Eng. Technol. 2020, 52, 1537–1544. [Google Scholar] [CrossRef]
- Li, R.; Zhu, R.; Chen, S.; He, C.; Xu, J. Study of damage generation induced by focused helium ion beam in silicon. J. Vac. Sci. Technol. B 2019, 37, 031804. [Google Scholar] [CrossRef]
- He, H.; Liao, W.L.; Wang, Y.Z.; Liu, W.B.; Zang, H.; He, C.H. Stability and interaction of cation Frenkel pair in wurtzite semiconductor materials. Comput. Mater. Sci. 2021, 196, 110554. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, H.; Liu, F.; He, H.; Liao, W.L.; Huang, Y. Simulation of displacement damage of gallium nitride under different neutron irradiation environments. Acta Phys. Sin. 2020, 69, 9. [Google Scholar] [CrossRef]
- Ullah, M.W.; Kuronen, A.; Nordlund, K.; Djurabekova, F.; Karaseov, P.A.; Titov, A.I. Atomistic simulation of damage production by atomic and molecular ion irradiation in GaN. J. Appl. Phys. 2012, 112, 479. [Google Scholar] [CrossRef]
- Ullah, M.W.; Kuronen, A.; Nordlund, K.; Djurabekova, F. Effects of defect clustering on optical properties of GaN by single and molecular ion irradiation. J. Appl. Phys. 2013, 114, 1. [Google Scholar] [CrossRef]
- Byggmastar, J.; Granberg, F.; Nordlund, K. Effects of the short-range repulsive potential on cascade damage in iron. J. Nucl. Mater. Mater. Asp. Fission Fusion 2018, 508, 530–539. [Google Scholar] [CrossRef]
- Khanal, M.P.; Uprety, S.; Mirkhani, V.; Wang, S.; Yapabandara, K.; Hassani, E.; Isaacs-Smith, T.; Ahyi, A.C.; Bozack, M.J.; Oh, T.S. Impact of 100 keV proton irradiation on electronic and optical properties of AlGaN/GaN high electron mobility transistors (HEMTs). J. Appl. Phys. 2018, 124, 215702. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Williams, J.S.; Zou, J.; Li, G.; Jagadish, C.; Titov, A.I. Effect of ion species on implantation-produced disorder in GaN at liquid nitrogen temperature. Nucl. Instrum. Methods Phys. Res. 2002, 190, 782–786. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Williams, J.S.; Titov, A.I.; Li, G.; Jagadish, C. Effect of the density of collision cascades on implantation damage in GaN. Appl. Phys. Lett. 2001, 78, 2694–2696. [Google Scholar] [CrossRef]
- Karaseov, P.A.; Karabeshkin, K.V.; Mongo, E.E.; Titov, A.I.; Ullah, M.W.; Kuronen, A.; Djurabekova, F.; Nordlund, K. Experimental study and MD simulation of damage formation in GaN under atomic and molecular ion irradiation. Vacuum 2016, 129, 166–169. [Google Scholar] [CrossRef]
- Chen, N.; Rasch, E.; Huang, D.; Heller, E.R.; Gao, F. Atomic-Scale Simulation for Pseudo-Metallic Defect Generation Kinetics and Effective NIEL in GaN. IEEE Trans. Nucl. Sci. 2018, 65, 1108–1118. [Google Scholar] [CrossRef]
- Hosseini, A.; Nasrabadi, M.N. Investigation of vacancy defects and temperature effects on the GaN bombarding with argon atoms: Molecular dynamics simulation. Mater. Chem. Phys. 2021, 271, 124854. [Google Scholar] [CrossRef]
- Ji, L.; Liu, L.; Xu, Z.; Song, Y.; Fang, F. Molecular dynamics simulation on the effect of dislocation structures on the retention and distribution of helium ions implanted into silicon. Nanotechnol. Precis. Eng. 2020, 3, 7. [Google Scholar] [CrossRef]
- Fan, X.H.; Chen, B.; Pan, S.F. Monte Carlo simulation of proton and α-particle transport in aluminum materials. J. At. Mol. Phys. 2008, 25, 255–259. [Google Scholar]
- Pan, Z.Y.; Zhu, B.X. Computer simulation of α-particle irradiation damage. Comput. Phys. 1993, 10, 7. [Google Scholar]
- Li, R.; Wu, G.; Liang, K.; Xue, L.; Wang, S.; Liu, S. Influence of atomic incident kinetic energy on crystalline quality of epitaxial GaN thin films: A molecular dynamics study. Mater. Sci. Semicond. Process. 2022, 150, 106979. [Google Scholar] [CrossRef]
- Albooyeh, A.R.; Dadrasi, A.; Mashhadzadeh, A.H. Effect of point defects and low-density carbon-doped on mechanical properties of BNNTs: A molecular dynamics study. Mater. Chem. Phys. 2019, 239, 122107. [Google Scholar] [CrossRef]
- Hosseini, A.; Nasrabadi, M.N.; Esfandiarpour, A. Investigation of primary radiation damage near free surfaces in iron nanofoam with a model cylindrical nanovoids structure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 439, 43–50. [Google Scholar] [CrossRef]
- Jolfaei, N.A.; Jolfaei, N.A.; Hekmatifar, M.; Piranfar, A.; Toghraie, D.; Sabetvand, R.; Rostami, S. Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. Comput. Methods Programs Biomed. 2020, 185, 105169. [Google Scholar] [CrossRef]
- Jafari, S.N.; Hakimi, Y.; Rouhi, S. Molecular dynamics investigation of the mechanical properties of two different graphyne allotropes: α-graphyne and α 2 -graphyne. Phys. E Low Dimens. Syst. Nanostruct. 2020, 119, 114022. [Google Scholar] [CrossRef]
- Sabetvand, R.; Ghazi, M.E.; Izadifard, M. Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite. J. Comput. Electron. 2020, 19, 70–79. [Google Scholar] [CrossRef]
- Kakanakova-Georgieva, A.; Ivanov, I.G.; Suwannaharn, N.; Hsu, C.-W.; Cora, I.; Pécz, B.; Giannazzo, F.; Sangiovanni, D.G.; Gueorguiev, G.K. MOCVD of AlN on epitaxial graphene at extreme temperatures. CrystEngComm 2021, 23, 385–390. [Google Scholar] [CrossRef]
- Lundgren, C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. A perspective on thermal stability and mechanical properties of 2D Indium Bismide from ab initio molecular dynamics. Nanotechnology 2022, 33, 335706. [Google Scholar] [CrossRef]
- Liu, C.; Szlufarska, I. Distribution of defect clusters in the primary damage of ion irradiated 3C-SiC. J. Nucl. Mater. 2018, 509, 392–400. [Google Scholar] [CrossRef]
- Sahi, Q.; Kim, Y.S. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies. Mater. Res. Express 2018, 5, 046518. [Google Scholar] [CrossRef]
- Mjr, A.; Mwdc, B.; Bs, C.; Jas, A. Primary radiation damage on displacement cascades in UO2, ThO2 and (U0.5Th0.5)O2—ScienceDirect. Comput. Mater. Sci. 2018, 154, 508–516. [Google Scholar]
- Ping, Z.A.; Xian, C.A.; Xz, A.; Yw, B. Effects of cutting parameters on the subsurface damage of single crystal copper during nanocutting process—ScienceDirect. Vacuum 2020, 187, 109420. [Google Scholar]
- Li, J.; Dong, L.; Dong, X.; Zhao, W.; Liu, J.; Xiong, J.; Xu, C. Study on wear behavior of FeNiCrCoCu high entropy alloy coating on Cu substrate based on molecular dynamics. Appl. Surf. Sci. 2021, 570, 151236. [Google Scholar] [CrossRef]
- Fu, X.; Xu, Z.; He, Z.; Hartmaier, A.; Fang, F. Molecular dynamics simulation of silicon ion implantation into diamond and subsequent annealing. Nucl. Instrum. Methods Phys. Res. 2018, 450, 51–55. [Google Scholar] [CrossRef]
- Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of compound semiconductors: Analytical bond-order potential for gallium, nitrogen and gallium nitride. J. Phys. Condens. Matter 2003, 15, 5649–5662. [Google Scholar] [CrossRef]
- Ting, L.; Ping, Z.; Peng, Y.; Siping, Z. In-plane thermal transport in black phosphorene/graphene layered heterostructures: A molecular dynamics study. Phys. Chem. Chem. Phys. 2018, 20, 21151–21162. [Google Scholar] [CrossRef]
- Liang, T.; Zhou, M.; Zhang, P.; Yuan, P.; Yang, D. Multilayer in-plane graphene/hexagonal boron nitride heterostructures: Insights into the interfacial thermal transport properties. Int. J. Heat Mass Transf. 2020, 151, 119395. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2008, 268, 1818–1823. [Google Scholar] [CrossRef]
- Liang, K.; Sun, X.; Wu, G.; Zhang, L.; Gan, Z. The investigation of molecular beam epitaxy growth of GaN by molecular dynamics simulation. Comput. Mater. Sci. 2019, 173, 109426. [Google Scholar] [CrossRef]
- Libin, Z.; Han, Y.; Guo, Z.; Sheng, L.; Zhiyin, G. Molecular dynamics simulation of aluminum nitride deposition: Temperature and N:Al ratio effects. R. Soc. Open Ence 2018, 5, 180629. [Google Scholar]
- Jin, Y.; Huang, H.; Zhong, Y.; Yuan, X.; Peng, Q. Role of interface on irradiation damage of Cudiamond composites using classical molecular dynamics simulations. Ceram. Int. 2022, 48, 16813–16824. [Google Scholar] [CrossRef]
- Huang, H.; Tang, X.; Chen, F.; Yang, Y.; Liu, J.; Li, H.; Chen, D. Radiation damage resistance and interface stability of copper–graphene nanolayered composite. J. Nucl. Mater. 2015, 460, 16–22. [Google Scholar] [CrossRef]
- Tian, J.; Zhou, W.; Feng, Q.; Zheng, J. Molecular dynamics simulations with electronic stopping can reproduce experimental sputtering yields of metals impacted by large cluster ions. Appl. Surf. Sci. 2018, 435, 65–71. [Google Scholar] [CrossRef]
- Palko, J.W.; Srour, J.R. Amorphous Inclusions in Irradiated Silicon and Their Effects on Material and Device Properties. IEEE Trans. Nucl. Sci. 2009, 55, 2992–2999. [Google Scholar] [CrossRef]
- Tafrishi, H.; Sadeghzadeh, S.; Ahmadi, R.; Molaei, F.; Hassanloo, H. Investigation of tetracosane thermal transport in presence of graphene and carbon nanotube fillers—A molecular dynamics study. J. Energy Storage 2020, 29, 101321. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Lattice constant | a = b = 3.216 Å c = 5.240 Å | Atomic number | 500,000 |
Defect rate | 10% | Doping rate | 5 × 1018 cm−3 |
Crystal size | 50a × 50a × 50a | Temperature | 300 K |
Incident energy | 0.1 MeV 0.5 MeV | Injected dose | 4 × 1011 ions/cm2 2 × 1012 ions/cm2 4 × 1012 ions/cm2 |
0.1 MeV | 0.5 MeV | |||||||
---|---|---|---|---|---|---|---|---|
Defect Classification | Quantity | Repair Capability (%) | Recombination Efficiency (%) | Quantity | Repair Capability (%) | Recombination Efficiency (%) | ||
Vacancy | Ga vacancy | 166 | 41.34 | 31.31 | 1276 | 22.95 | 26.5 | |
N vacancy | 217 | 21.38 | 1293 | 29.8 | ||||
Interstitial defect | Two atoms | Ga-N (Ga) | 194 | 35.25 | 33.52 | 1116 | 26.86 | 26.92 |
Ga-N (N) | 120 | 1075 | ||||||
Ga-Ga (Ga) | 22 | 92 | ||||||
Ga-Ga (N) | 2 | 8 | ||||||
N-N (Ga) | 0 | 13 | ||||||
N-N (N) | 20 | 90 | ||||||
Three atoms | N-N-N (N) | 0 | 18.19 | 1 | 28.57 | |||
Ga-Ga-N (Ga) | 2 | 24 | ||||||
Ga-Ga-N (N) | 1 | 9 | ||||||
Ga-N-N (Ga) | 3 | 22 | ||||||
Ga-N-N (N) | 3 | 14 | ||||||
Four atoms | Ga-Ga-N-N (N) | 0 | / | 1 | / | |||
Ga-Ga-Ga-N (Ga) | 0 | 1 |
Structure | Initial State (%) | Five α-Particles (%) | Ten α-Particles (%) |
---|---|---|---|
Other | 16.3 | 27.3 | 31.9 |
Hexagonal diamond | 18.1 | 14.0 | 12.8 |
Hexagonal diamond (1st neighbor) | 29.6 | 24.7 | 23.1 |
Hexagonal diamond (2nd neighbor) | 36.1 | 34.0 | 32.2 |
Mode | Number of Sputtered Atoms | Sputtering Yield (%) |
---|---|---|
Energy of 0.1 MeV | 26 | 0.0058 |
Energy of 0.5 MeV | 33 | 0.0073 |
Accumulation of five α-particles | 2302 | 0.512 |
Accumulation of ten α-particles | 2871 | 0.638 |
Five α-Particles | Ten α-Particles | |||
---|---|---|---|---|
Defect Type | Quantity | Quantity | ||
Vacancy | Ga vacancy | 5669 | 12,093 | |
N vacancy | 11,473 | 16,780 | ||
Interstitial | Two atoms | Ga-N (Ga) | 8974 | 12,803 |
Ga-N (N) | 3383 | 8144 | ||
Ga-Ga (Ga) | 323 | 712 | ||
Ga-Ga (N) | 254 | 470 | ||
N-N (Ga) | 234 | 426 | ||
N-N (N) | 153 | 399 | ||
Three atoms | N-N-N (N) | 9 | 16 | |
Ga-Ga-N (Ga) | 384 | 623 | ||
Ga-Ga-N (N) | 94 | 159 | ||
Ga-N-N (Ga) | 125 | 291 | ||
Ga-N-N (N) | 101 | 313 | ||
Four atoms | 116 | 256 | ||
Five atoms or more | 232 | 324 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xiong, Z.; Ouyang, X. Molecular Dynamics Study on the Mechanism of Gallium Nitride Radiation Damage by Alpha Particles. Materials 2023, 16, 4224. https://doi.org/10.3390/ma16124224
Liu Y, Xiong Z, Ouyang X. Molecular Dynamics Study on the Mechanism of Gallium Nitride Radiation Damage by Alpha Particles. Materials. 2023; 16(12):4224. https://doi.org/10.3390/ma16124224
Chicago/Turabian StyleLiu, Yang, Zhenpeng Xiong, and Xiaoping Ouyang. 2023. "Molecular Dynamics Study on the Mechanism of Gallium Nitride Radiation Damage by Alpha Particles" Materials 16, no. 12: 4224. https://doi.org/10.3390/ma16124224
APA StyleLiu, Y., Xiong, Z., & Ouyang, X. (2023). Molecular Dynamics Study on the Mechanism of Gallium Nitride Radiation Damage by Alpha Particles. Materials, 16(12), 4224. https://doi.org/10.3390/ma16124224