Study of Hybrid Composite Joints with Thin-Ply-Reinforced Adherends
Abstract
:1. Introduction
2. Experimental Details
2.1. Adhesive
2.2. Adherend
2.2.1. Conventional Composite
2.2.2. Thin-Ply
2.3. Single Lap Joint Manufacturing
2.4. Testing Condition
3. Experimental Results
3.1. Load–Displacement Curve
3.2. Damage Initiation
3.3. Delamination
3.4. Microscopic Images
4. Numerical Study
4.1. Load–Disploacement Curve
4.2. Damage
5. Discussion
6. Conclusions
- An increase of approximately 90% in the failure load was found for the hybrid joint reinforced with thin ply when compared to the reference conventional composite joint.
- According to the experimental observation, damage initiation occurs in the adherend for the reference conventional composite and thin-ply joint, while for the hybrid (25% thin ply) joint, damage initiation occurs in the adhesive layer.
- Damage propagates as a combination of delamination and cohesive failure for all configurations. However, a more limited amount of delamination was obtained for the hybrid joint.
- Microscopic images of the bond line allowed for the identification of multiple fibre breakages and fibre pull-outs on the failure surface of the reference conventional composite configuration. In contrast, the fibres were still intact and well-aligned in the failure surface of the hybrid joint.
- The configurations under analysis were modelled numerically, and a good agreement was obtained between the numerical and experimental results, allowing for a precise representation of the damage initiation and failure processes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karataş, M.A.; Gökkaya, H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def. Technol. 2018, 14, 318–326. [Google Scholar] [CrossRef]
- Ashby, M.F.; Jones, D.R. Engineering Materials 1: An Introduction to Properties, Applications and Design; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1. [Google Scholar]
- Sahu, P.; Gupta, M.K. A review on the properties of natural fibres and its bio-composites: Effect of alkali treatment. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020, 234, 198–217. [Google Scholar] [CrossRef]
- Zhou, M.; Gu, W.; Wang, G.; Zheng, J.; Pei, C.; Fan, F.; Ji, G. Sustainable wood-based composites for microwave absorption and electromagnetic interference shielding. J. Mater. Chem. A 2020, 8, 24267–24283. [Google Scholar] [CrossRef]
- Budzik, M.K.; Wolfahrt, M.; Reis, P.; Kozłowski, M.; Sena-Cruz, J.; Papadakis, L.; Nasr Saleh, M.; Machalicka, K.V.; Teixeira de Freitas, S.; Vassilopoulos, A.P. Testing mechanical performance of adhesively bonded composite joints in engineering applications: An overview. J. Adhes. 2022, 98, 2133–2209. [Google Scholar] [CrossRef]
- Nassiraei, H.; Rezadoost, P. Static capacity of tubular X-joints reinforced with fiber reinforced polymer subjected to compressive load. Eng. Struct. 2021, 236, 112041. [Google Scholar] [CrossRef]
- Nassiraei, H.; Rezadoost, P. Local joint flexibility of tubular T/Y-joints retrofitted with GFRP under in-plane bending moment. Mar. Struct. 2021, 77, 102936. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Q.; Li, X.; Guo, Y.; Zhang, Z.; Yang, H.; Yuan, Y. Potential advantage of thin-ply on the composite bolster of a bogie for a high-speed electric multiple unit. Polym. Compos. 2021, 42, 3404–3417. [Google Scholar] [CrossRef]
- Su, K.B. Delamination Resistance of Stitched Thermoplastic Matrix Composite Laminates; ASTM International: Conshohocken, PA, USA, 1989; pp. 279–300. [Google Scholar]
- Zhou, X.; Li, J.; Qu, C.; Bu, W.; Liu, Z.; Fan, Y.; Bao, G. Bending behavior of hybrid sandwich composite structures containing 3D printed PLA lattice cores and magnesium alloy face sheets. J. Adhes. 2022, 98, 1713–1731. [Google Scholar] [CrossRef]
- Guillamet, G.; Turon, A.; Costa, J.; Renart, J.; Linde, P.; Mayugo, J.A. Damage occurrence at edges of non-crimp-fabric thin-ply laminates under off-axis uniaxial loading. Compos. Sci. Technol. 2014, 98, 44–50. [Google Scholar] [CrossRef]
- Tserpes, K.; Barroso-Caro, A.; Carraro, P.A.; Beber, V.C.; Floros, I.; Gamon, W.; Kozłowski, M.; Santandrea, F.; Shahverdi, M.; Skejić, D.; et al. A review on failure theories and simulation models for adhesive joints. J. Adhes. 2021, 98, 1855–1915. [Google Scholar] [CrossRef]
- Sam-Daliri, O.; Farahani, M.; Araei, A. Condition monitoring of crack extension in the reinforced adhesive joint by carbon nanotubes. Weld. Technol. Rev. 2020, 91, 7–15. [Google Scholar] [CrossRef]
- Ghabezi, P.; Farahani, M. Trapezoidal traction–separation laws in mode II fracture in nano-composite and nano-adhesive joints. J. Reinf. Plast. Compos. 2018, 37, 780–794. [Google Scholar] [CrossRef]
- Ramezani, F.; Simões, B.D.; Carbas, R.J.; Marques, E.A.; da Silva, L.F. Developments in Laminate Modification of Adhesively Bonded Composite Joints. Materials 2023, 16, 568. [Google Scholar] [CrossRef]
- Akhavan-Safar, A.; Ramezani, F.; Delzendehrooy, F.; Ayatollahi, M.R.; da Silva, L.F.M. A review on bi-adhesive joints: Benefits and challenges. Int. J. Adhes. Adhes. 2022, 114, 103098. [Google Scholar] [CrossRef]
- Qin, Z.; Yang, K.; Wang, J.; Zhang, L.; Huang, J.; Peng, H.; Xu, J. The effects of geometrical dimensions on the failure of composite-to-composite adhesively bonded joints. J. Adhes. 2021, 97, 1024–1051. [Google Scholar] [CrossRef]
- Ramezani, F.; Nunes, P.D.P.; Carbas, R.J.C.; Marques, E.A.S.; da Silva, L.F.M. The joint strength of hybrid composite joints reinforced with different laminates materials. J. Adv. Join. Process. 2022, 5, 100103. [Google Scholar] [CrossRef]
- Simões, B.D.; Nunes, P.D.; Ramezani, F.; Carbas, R.J.; Marques, E.A.; da Silva, L.F. Experimental and Numerical Study of Thermal Residual Stresses on Multimaterial Adherends in Single-Lap Joints. Materials 2022, 15, 8541. [Google Scholar] [CrossRef]
- Shang, X.; Marques, E.A.S.; Machado, J.J.M.; Carbas, R.J.C.; Jiang, D.; Da Silva, L.F.M. A strategy to reduce delamination of adhesive joints with composite substrates. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 521–530. [Google Scholar] [CrossRef]
- Potter, K.D.; Guild, F.J.; Harvey, H.J.; Wisnom, M.R.; Adams, R.D. Understanding and control of adhesive crack propagation in bonded joints between carbon fibre composite adherends I. Experimental. Int. J. Adhes. Adhes. 2001, 21, 435–443. [Google Scholar] [CrossRef]
- Mouritz, A.P. Review of z-pinned composite laminates. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2383–2397. [Google Scholar] [CrossRef]
- Ko, F.K.; Chou, T.W. Textile Structural Composites, 6th ed.; Composite Materials Series; Elsevier Science: Amsterdam, The Netherlands, 1989; Volume 3. [Google Scholar]
- Sawyer, J.W. Effect of stitching on the strength of bonded composite single lap joints. AIAA J. 1985, 23, 1744–1748. [Google Scholar] [CrossRef]
- Hader-Kregl, L.; Wallner, G.M.; Kralovec, C.; Eyßell, C. Effect of inter-plies on the short beam shear delamination of steel/composite hybrid laminates. J. Adhes. 2019, 95, 1088–1100. [Google Scholar] [CrossRef]
- Verpoest, I.; Wevers, M.; De Meester, P.; Declercq, P. 2.5 D-fabrics and 3D-fabrics for delamination resistant composite laminates and sandwich structures. Sampe J. 1989, 25, 51–56. [Google Scholar]
- Dransfield, K.; Baillie, C.; Mai, Y.W. Improving the delamination resistance of CFRP by stitching—A review. Compos. Sci. Technol. 1994, 50, 305–317. [Google Scholar] [CrossRef]
- Sihn, S.; Kim, R.Y.; Kawabe, K.; Tsai, S.W. Experimental studies of thin-ply laminated composites. Compos. Sci. Technol. 2007, 67, 996–1008. [Google Scholar] [CrossRef]
- Amacher, R.; Cugnoni, J.; Botsis, J.; Sorensen, L.; Smith, W.; Dransfeld, C. Thin ply composites: Experimental characterization and modeling of size-effects. Compos. Sci. Technol. 2014, 101, 121–132. [Google Scholar] [CrossRef]
- Roure, T. C-PLY™, a new structural approach to multiaxials in composites: BI-ANGLE NCF. JEC Compos. 2011, 68, 53–55. [Google Scholar]
- Arteiro, A.; Catalanotti, G.; Xavier, J.; Linde, P.; Camanho, P.P. A strategy to improve the structural performance of non-crimp fabric thin-ply laminates. Compos. Struct. 2018, 188, 438–449. [Google Scholar] [CrossRef]
- Kötter, B.; Karsten, J.; Körbelin, J.; Fiedler, B. CFRP thin-ply fibre metal laminates: Influences of ply thickness and metal layers on open hole tension and compression properties. Materials 2020, 13, 910. [Google Scholar] [CrossRef]
- Wisnom, M.R.; Khan, B.; Hallett, S.R. Size effects in unnotched tensile strength of unidirectional and quasi-isotropic carbon/epoxy composites. Compos. Struct. 2008, 84, 21–28. [Google Scholar] [CrossRef]
- Kim, R.Y.; Soni, S.R. Experimental and analytical studies on the onset of delamination in laminated composites. J. Compos. Mater. 1984, 18, 70–80. [Google Scholar] [CrossRef]
- Huang, C.; He, M.; He, Y.; Xiao, J.; Zhang, J.; Ju, S.; Jiang, D. Exploration relation between interlaminar shear properties of thin-ply laminates under short-beam bending and meso-structures. J. Compos. Mater. 2018, 52, 2375–2386. [Google Scholar] [CrossRef]
- Kupski, J.; Zarouchas, D.; de Freitas, S.T. Thin-plies in adhesively bonded carbon fiber reinforced polymers. Compos. Part B Eng. 2020, 184, 107627. [Google Scholar] [CrossRef]
- Camanho, P.P.; Dávila, C.G.; Pinho, S.T.; Iannucci, L.; Robinson, P. Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Compos. Part A Appl. Sci. Manuf. 2006, 37, 165–176. [Google Scholar] [CrossRef]
- Chan, W.S. Design approaches for edge delamination resistance in laminated composites. J. Compos. Technol. Res. 1991, 13, 91–96. [Google Scholar]
- Ramezani, F.; Carbas, R.J.; Marques, E.A.; Ferreira, A.M.; da Silva, L.F. A study of the fracture mechanisms of hybrid carbon fiber reinforced polymer laminates reinforced by thin-ply. Polym. Compos. 2023, 44, 1672–1683. [Google Scholar] [CrossRef]
- 3M. 3m Scotch-Weld Structural Adhesive Lm Af 163-2k Technical Datasheet; Technical Report; 3M: St. Paul, MN, USA, 2009. [Google Scholar]
- Morgado, M.A.; Carbas, R.J.C.; Dos Santos, D.G.; Da Silva, L.F.M. Strength of CFRP joints reinforced with adhesive layers. Int. J. Adhes. Adhes. 2020, 97, 102475. [Google Scholar] [CrossRef]
- Campilho, R.D.; De Moura, M.F.S.F.; Domingues, J.J.M.S. Modelling single and double-lap repairs on composite materials. Compos. Sci. Technol. 2005, 65, 1948–1958. [Google Scholar] [CrossRef]
- Machado, J.J.M.; Marques, E.A.S.; Campilho, R.D.S.G.; da Silva, L.F. Mode I fracture toughness of CFRP as a function of temperature and strain rate. J. Compos. Mater. 2017, 51, 3315–3326. [Google Scholar] [CrossRef]
- Ramezani, F.; Carbas, R.; Marques, E.A.S.; Ferreira, A.M.; da Silva, L.F.M. Study on out-of-plane tensile strength of angle-plied reinforced hybrid CFRP laminates using thin-ply. Mech. Adv. Mater. Struct. 2023, 1–14. [Google Scholar] [CrossRef]
- Liu, P.F.; Chu, J.K.; Liu, Y.L.; Zheng, J.Y. A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission. Mater. Des. 2012, 37, 228–235. [Google Scholar] [CrossRef]
- Okoli, O.I.; Smith, G.F. Failure modes of fibre reinforced composites: The effects of strain rate and fibre content. J. Mater. Sci. 1998, 33, 5415–5422. [Google Scholar] [CrossRef]
- Ghabezi, P.; Farahani, M. A cohesive model with a multi-stage softening behavior to predict fracture in nano composite joints. Eng. Fract. Mech. 2019, 219, 106611. [Google Scholar] [CrossRef]
Mechanical Property | Value |
---|---|
Young’s modulus [MPa] | 1521.87 |
Shear modulus [MPa] | 563.67 |
Tensile strength [MPa] | 46.93 |
Shear strength [MPa] | 46.93 |
[N/mm] | 4.05 |
[N/mm] | 9.77 |
Mechanical Property | Value |
---|---|
[MPa] | 109,000 |
[MPa] | 8819 |
[MPa] | 4315 |
[MPa] | 3200 |
0.34 | |
0.38 |
Property | Value |
---|---|
Tensile strength [MPa] | 25 |
Shear strength [MPa] | 13.5 |
[N/mm] | 0.33 |
[N/mm] | 0.79 |
Mechanical Property | Value |
---|---|
[MPa] | 101,720 |
[MPa] | 5680 |
[MPa] | 3030 |
[MPa] | 3030 |
0.38 | |
0.04 |
Property | Value |
---|---|
Tensile strength [MPa] | 35 |
Shear strength [MPa] | 32 |
[N/mm] | 0.76 |
[N/mm] | 0.83 |
Configuration | Representative [mm2] | Average [mm2] |
---|---|---|
Conventional composite | 190.52 | 210.00 ± 32.75 |
Thin-ply | 296.82 | 332.07 ± 39.65 |
Hybrid (25% thin ply) | 110.83 | 128.20 ± 36.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramezani, F.; Carbas, R.J.C.; Marques, E.A.S.; da Silva, L.F.M. Study of Hybrid Composite Joints with Thin-Ply-Reinforced Adherends. Materials 2023, 16, 4002. https://doi.org/10.3390/ma16114002
Ramezani F, Carbas RJC, Marques EAS, da Silva LFM. Study of Hybrid Composite Joints with Thin-Ply-Reinforced Adherends. Materials. 2023; 16(11):4002. https://doi.org/10.3390/ma16114002
Chicago/Turabian StyleRamezani, Farin, Ricardo J. C. Carbas, Eduardo A. S. Marques, and Lucas F. M. da Silva. 2023. "Study of Hybrid Composite Joints with Thin-Ply-Reinforced Adherends" Materials 16, no. 11: 4002. https://doi.org/10.3390/ma16114002
APA StyleRamezani, F., Carbas, R. J. C., Marques, E. A. S., & da Silva, L. F. M. (2023). Study of Hybrid Composite Joints with Thin-Ply-Reinforced Adherends. Materials, 16(11), 4002. https://doi.org/10.3390/ma16114002