Features of Helium–Vacancy Complex Formation at the Zr/Nb Interface
Abstract
1. Introduction
2. Methods and Details of Calculation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ullmaier, H. Radiation Damage in Metallic Materials. MRS Bull. 1997, 22, 14–21. [Google Scholar] [CrossRef]
- Was, G.S.; Petti, D.; Ukai, S.; Zinkle, S. Materials for Future Nuclear Energy Systems. J. Nucl. Mater. 2019, 527, 151837. [Google Scholar] [CrossRef]
- Yang, W.; Pang, J.; Zheng, S.; Wang, J.; Zhang, X.; Ma, X. Interface Effects on He Ion Irradiation in Nanostructured Materials. Materials 2019, 12, 2639. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Khanal, L.R.; Sundararajan, J.A.; Qiang, Y. Advanced Nanomaterials for Nuclear Energy and Nanotechnology. Energy Technol. 2019, 8, 1901070. [Google Scholar] [CrossRef]
- Xue, J.; Li, Y.; Gao, L.; Qian, D.; Song, Z.; Wang, X.; Zhu, X.; Chen, J. Effects of Periods on the Evolution of Microstructure and Mechanical Properties of Multilayered Cu-W Films during Thermal Annealing. Surf. Coat. Technol. 2020, 381, 125179. [Google Scholar] [CrossRef]
- Li, M.; Hou, Q.; Cui, J.; Qiu, M.; Yang, A.; Zhou, M. Atomistic Simulations of Helium Behavior at the Cu(111)/W(110) Interface. J. Nucl. Mater. 2021, 555, 153157. [Google Scholar] [CrossRef]
- Cui, Y.; Derby, B.; Li, N.; Misra, A. Fracture Resistance of Hierarchical Cu–Mo Nanocomposite Thin Films. Mater. Sci. Eng. A 2021, 799, 139891. [Google Scholar] [CrossRef]
- Li, S.-H.; Li, J.-T.; Han, W.-Z. Radiation-Induced Helium Bubbles in Metals. Materials 2019, 12, 1036. [Google Scholar] [CrossRef][Green Version]
- Ni, J.; Li, J.; Jian, J.; He, J.; Chen, H.; Leng, X.; Liu, X. Recent Studies on the Fabrication of Multilayer Films by Magnetron Sputtering and Their Irradiation Behaviors. Coatings 2021, 11, 1468. [Google Scholar] [CrossRef]
- Su, Z.; Jiang, H.; Li, H.; Zhang, Y.; Chen, J.; Zhao, J.; Ma, Y. Recent Progress on Interfaces in Nanomaterials for Nuclear Radiation Resistance. ChemNanoMat 2022, 9, e202200477. [Google Scholar] [CrossRef]
- Qi, N.; Zhang, H.X.; Chen, Z.Q.; Ren, F.; Zhao, B.; Jiang, M.; Uedono, A. Selective Trapping of Positrons by Ag Nanolayers in a V/Ag Multilayer System. AIP Adv. 2020, 10, 035012. [Google Scholar] [CrossRef]
- Yang, Z.; Qiu, N.; Yang, H.; Chen, Q.; Wang, Y. Irradiation Tolerance Enhanced by Coherent Interfaces of FCC/BCC HEA Multilayers. Surf. Coat. Technol. 2023, 457, 129338. [Google Scholar] [CrossRef]
- Chen, H.; Du, J.; Liang, Y.; Wang, P.; Huang, J.; Zhang, J.; Zhao, Y.; Wang, X.; Zhang, X.; Wang, Y.; et al. Comparison of Vacancy Sink Efficiency of Cu/V and Cu/Nb Interfaces by the Shared Cu Layer. Materials 2019, 12, 2628. [Google Scholar] [CrossRef][Green Version]
- Anwar Ali, H.P.; Radchenko, I.; Li, N.; Budiman, A. Effect of Multilayer Interface through in Situ Fracture of Cu/Nb and Al/Nb Metallic Multilayers. J. Mater. Res. 2019, 34, 1564–1573. [Google Scholar] [CrossRef]
- Jiang, G.; Xu, D.; Yang, W.; Liu, L.; Zhi, Y.; Yang, J. High-Temperature Corrosion of Zr–Nb Alloy for Nuclear Structural Materials. Prog. Nucl. Energy 2022, 154, 104490. [Google Scholar] [CrossRef]
- Debski, A.; Debski, R.; Gasior, W. New Features of Entall Database: Comparison of Experimental and Model Formation Enthalpies/ Nowe Funkcje Bazy Danych Entall: Porównanie Doświadczalnych I Modelowych Entalpii Tworzenia. Arch. Metall. Mater. 2014, 59, 1337–1343. [Google Scholar] [CrossRef]
- Daghbouj, N.; Sen, H.S.; Callisti, M.; Vronka, M.; Karlik, M.; Duchoň, J.; Čech, J.; Havránek, V.; Polcar, T. Revealing Nanoscale Strain Mechanisms in Ion-Irradiated Multilayers. Acta Mater. 2022, 229, 117807. [Google Scholar] [CrossRef]
- Sen, H.S.; Daghbouj, N.; Callisti, M.; Vronka, M.; Karlík, M.; Duchoň, J.; Čech, J.; Lorinčík, J.; Havránek, V.; Bábor, P.; et al. Interface-Driven Strain in Heavy Ion-Irradiated Zr/Nb Nanoscale Metallic Multilayers: Validation of Distortion Modeling via Local Strain Mapping. ACS Appl. Mater. Interfaces 2022, 14, 12777–12796. [Google Scholar] [CrossRef]
- Liang, X.Q.; Wang, Y.Q.; Zhao, J.T.; Wu, S.H.; Feng, X.B.; Wu, K.; Zhang, J.Y.; Liu, G.; Sun, J. Size-Dependent Microstructure Evolution and Hardness of He Irradiated Nb/Zr Multilayers under Different Ion Doses. Mater. Sci. Eng. A 2019, 764, 138259. [Google Scholar] [CrossRef]
- Daghbouj, N.; Sen, H.S.; Čížek, J.; Lorinčík, J.; Karlík, M.; Callisti, M.; Čech, J.; Havránek, V.; Li, B.; Krsjak, V.; et al. Characterizing Heavy Ions-Irradiated Zr/Nb: Structure and Mechanical Properties. Mater. Des. 2022, 219, 110732. [Google Scholar] [CrossRef]
- Daghbouj, N.; Callisti, M.; Sen, H.S.; Karlik, M.; Čech, J.; Vronka, M.; Havránek, V.; Čapek, J.; Minárik, P.; Bábor, P.; et al. Interphase Boundary Layer-Dominated Strain Mechanisms in Cu+ Implanted Zr-Nb Nanoscale Multilayers. Acta Mater. 2021, 202, 317–330. [Google Scholar] [CrossRef]
- Laptev, R.; Stepanova, E.; Pushilina, N.; Svyatkin, L.; Krotkevich, D.; Lomygin, A.; Ognev, S.; Siemek, K.; Doroshkevich, A.; Uglov, V. Distribution of Hydrogen and Defects in the Zr/Nb Nanoscale Multilayer Coatings after Proton Irradiation. Materials 2022, 15, 3332. [Google Scholar] [CrossRef] [PubMed]
- Laptev, R.; Svyatkin, L.; Krotkevich, D.; Stepanova, E.; Pushilina, N.; Lomygin, A.; Ognev, S.; Siemek, K.; Uglov, V. First-Principles Calculations and Experimental Study of H+-Irradiated Zr/Nb Nanoscale Multilayer System. Metals 2021, 11, 627. [Google Scholar] [CrossRef]
- Laptev, R.; Lomygin, A.; Krotkevich, D.; Syrtanov, M.; Kashkarov, E.; Bordulev, Y.; Siemek, K.; Kobets, A. Effect of Proton Irradiation on the Defect Evolution of Zr/Nb Nanoscale Multilayers. Metals 2020, 10, 535. [Google Scholar] [CrossRef][Green Version]
- Laptev, R.; Stepanova, E.; Pushilina, N.; Kashkarov, E.; Krotkevich, D.; Lomygin, A.; Sidorin, A.; Orlov, O.; Uglov, V. The Microstructure of Zr/Nb Nanoscale Multilayer Coatings Irradiated with Helium Ions. Coatings 2023, 13, 193. [Google Scholar] [CrossRef]
- Huang, J.; Liu, H.; Gao, Z.; Su, Y.; Liu, Q.; Ge, W.; Luo, F.; Xia, S.; Cao, L.; Xue, J.; et al. Helium-Hydrogen Synergistic Effects in Structural Materials Under Fusion Neutron Irradiation. Front. Mater. 2022, 9, 849115. [Google Scholar] [CrossRef]
- Yang, H.L.; Kano, S.; McGrady, J.; Chen, D.Y.; Murakami, K.; Abe, H. Microstructural Evolution and Hardening Effect in Low-Dose Self-Ion Irradiated Zr–Nb Alloys. J. Nucl. Mater. 2020, 542, 152523. [Google Scholar] [CrossRef]
- Yang, H. Anisotropic Effects of Radiation-Induced Hardening in Nuclear Structural Materials: A Review. J. Nucl. Mater. 2022, 561, 153571. [Google Scholar] [CrossRef]
- Maxwell, C.; Pencer, J.; Torres, E. Atomistic Simulation Study of Clustering and Evolution of Irradiation-Induced Defects in Zirconium. J. Nucl. Mater. 2020, 531, 151979. [Google Scholar] [CrossRef]
- King, D.J.M.; Knowles, A.J.; Bowden, D.; Wenman, M.R.; Capp, S.; Gorley, M.; Shimwell, J.; Packer, L.; Gilbert, M.R.; Harte, A. High Temperature Zirconium Alloys for Fusion Energy. J. Nucl. Mater. 2022, 559, 153431. [Google Scholar] [CrossRef]
- Li, Y.; French, A.; Hu, Z.; Gabriel, A.; Hawkins, L.R.; Garner, F.A.; Shao, L. A Quantitative Method to Determine the Region Not Influenced by Injected Interstitial and Surface Effects during Void Swelling in Ion-Irradiated Metals. J. Nucl. Mater. 2023, 573, 154140. [Google Scholar] [CrossRef]
- Zhu, H.; Qin, M.; Wei, T.; Davis, J.; Ionescu, M. Atomic-Scale Study of He Ion Irradiation-Induced Clustering in α-Zirconium. Acta Mater. 2023, 244, 118584. [Google Scholar] [CrossRef]
- Dai, C.; Varvenne, C.; Saidi, P.; Yao, Z.; Daymond, M.R.; Béland, L.K. Stability of Vacancy and Interstitial Dislocation Loops in α-Zirconium: Atomistic Calculations and Continuum Modelling. J. Nucl. Mater. 2021, 554, 153059. [Google Scholar] [CrossRef]
- Hamann, D.R. Optimized Norm-Conserving Vanderbilt Pseudopotentials. Phys. Rev. B 2013, 88, 085117. [Google Scholar] [CrossRef][Green Version]
- Gonze, X.; Amadon, B.; Antonius, G.; Arnardi, F.; Baguet, L.; Beuken, J.-M.; Bieder, J.; Bottin, F.; Bouchet, J.; Bousquet, E.; et al. The Abinit project: Impact, Environment and Recent Developments. Comput. Phys. Commun. 2020, 248, 107042. [Google Scholar] [CrossRef]
- Romero, A.H.; Allan, D.C.; Amadon, B.; Antonius, G.; Applencourt, T.; Baguet, L.; Bieder, J.; Bottin, F.; Bouchet, J.; Bousquet, E.; et al. ABINIT: Overview and Focus on Selected Capabilities. J. Chem. Phys. 2020, 152, 124102. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef][Green Version]
- Svyatkin, L.A.; Terenteva, D.V.; Laptev, R.S. Influence of Vacancy on Helium Interaction with α-Zirconium. J. Phys. Conf. Ser. 2021, 1989, 012039. [Google Scholar] [CrossRef]
- Sen, H.S.; Polcar, T. Vacancy-Interface-Helium Interaction in Zr-Nb Multi-Layer System: A First-Principles Study. J. Nucl. Mater. 2019, 518, 11–20. [Google Scholar] [CrossRef]
- Kashinath, A.; Demkowicz, M.J. A Predictive Interatomic Potential for He in Cu and Nb. Model. Simul. Mater. Sci. Eng. 2011, 19, 035007. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Zhou, X.; Liang, J.; Sheng, L.; Peng, S. First-Principles Study of the Structural Stability and Electronic and Elastic Properties of Helium Inα-Zirconium. Adv. Condens. Matter Phys. 2014, 2014, 929750. [Google Scholar] [CrossRef][Green Version]
- Domain, C.; Legris, A. Ab Initio Atomic-Scale Determination of Point-Defect Structure in Hcp Zirconium. Philos. Mag. 2005, 85, 569–575. [Google Scholar] [CrossRef]
- Domain, C.; Besson, R.; Legris, A. Atomic-Scale Ab-Initio Study of the Zr-H System: I. Bulk Properties. Acta Mater. 2002, 50, 3513–3526. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, X.; Song, H.; Han, G.; Lin, D.-Y. Effects of Vacancies on the Mechanical Properties of Zirconium: An Ab Initio Investigation. Mater. Des. 2017, 119, 30–37. [Google Scholar] [CrossRef]
- Ford, D.C.; Zapol, P.; Cooley, L.D. First-Principles Study of Carbon and Vacancy Structures in Niobium. J. Phys. Chem. C 2015, 119, 14728–14736. [Google Scholar] [CrossRef]
- Cerdeira, M.A.; Palacios, S.L.; González, C.; Fernández-Pello, D.; Iglesias, R. Ab Initio Simulations of the Structure, Energetics and Mobility of Radiation-Induced Point Defects in Bcc Nb. J. Nucl. Mater. 2016, 478, 185–196. [Google Scholar] [CrossRef]
No. | Ef (eV) | |||||
---|---|---|---|---|---|---|
Zr | Nb | |||||
in 1st Atomic Layer | in 2nd Atomic Layer | in 3rd Atomic Layer | in 1st Atomic Layer | in 2nd Atomic Layer | in 3rd Atomic Layer | |
1 | 1.911 | 2.486 | 2.371 | 1.754 | 3.480 | 3.379 |
2 | 2.392 | 2.331 | 2.759 | 2.451 | 2.457 | 3.321 |
3 | 2.760 | 2.996 | 2.820 | 2.452 | 1.957 | 2.749 |
4 | 1.741 | 1.909 | 1.990 | - | 2.456 | 3.395 |
5 | 1.764 | 2.379 | 2.561 | - | - | - |
6 | 2.125 | 2.530 | 2.863 | - | - | - |
7 | 2.559 | - | 2.777 | - | - | - |
Vacancy Number | Evac (eV) | Vacancy Number | Evac (eV) | Vacancy Number | Evac (eV) | Vacancy Number | Evac (eV) | Vacancy Number | Evac (eV) | Vacancy Number | Evac (eV) |
---|---|---|---|---|---|---|---|---|---|---|---|
Vacancy in Zr | Vacancy in Nb | ||||||||||
1st Layer | 2nd Layer | 3rd Layer | 1st Layer | 2nd Layer | 3rd Layer | ||||||
10 | 2.543 | 5 | 2.130 | 1 | 1.953 | 14 | 0.976 | 16 | 2.029 | 18 | 3.026 |
11 | 1.760 | 6 | 0.980 | 2 | 1.958 | 15 | 0.532 | 17 | 1.317 | 19 | 2.883 |
12 | 1.074 | 7 | 2.586 | 3 | 1.873 | - | - | - | - | - | - |
13 | 1.074 | 8 | 0.936 | 4 | 1.705 | - | - | - | - | - | - |
- | - | 9 | 1.713 | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svyatkin, L.; Terenteva, D.; Laptev, R. Features of Helium–Vacancy Complex Formation at the Zr/Nb Interface. Materials 2023, 16, 3742. https://doi.org/10.3390/ma16103742
Svyatkin L, Terenteva D, Laptev R. Features of Helium–Vacancy Complex Formation at the Zr/Nb Interface. Materials. 2023; 16(10):3742. https://doi.org/10.3390/ma16103742
Chicago/Turabian StyleSvyatkin, Leonid, Daria Terenteva, and Roman Laptev. 2023. "Features of Helium–Vacancy Complex Formation at the Zr/Nb Interface" Materials 16, no. 10: 3742. https://doi.org/10.3390/ma16103742
APA StyleSvyatkin, L., Terenteva, D., & Laptev, R. (2023). Features of Helium–Vacancy Complex Formation at the Zr/Nb Interface. Materials, 16(10), 3742. https://doi.org/10.3390/ma16103742