Energy Storage Properties of Sol–Gel-Processed SrTiO3 Films
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, H.; Zhao, Y.-Y.; Ouyang, J.; Wang, K.; Cheng, H.; Su, Y. Achieving a Record-High Capacitive Energy Density on Si with Columnar Nanograined Ferroelectric Films. ACS Appl. Mater. Interfaces 2022, 14, 7805–7813. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhu, H.; Ouyang, J.; Tian, Y.; Wang, S.; Li, Q.; Zhao, Y.-Y.; Cheng, H.; Zhai, X. Significantly improved energy storage stabilities in nanograined ferroelectric film capacitors with a reduced dielectric nonlinearity. Appl. Surf. Sci. 2022, 581, 152400. [Google Scholar] [CrossRef]
- Qian, J.; Han, Y.; Yang, C.; Lv, P.; Zhang, X.; Feng, C.; Lin, X.; Huang, S.; Cheng, X.; Cheng, Z. Energy storage performance of flexible NKBT/NKBT-ST multilayer film capacitor by interface engineering. Nano Energy 2020, 74, 104862. [Google Scholar] [CrossRef]
- Yang, L.; Kong, X.; Li, F.; Hao, H.; Cheng, Z.; Liu, H.; Li, J.-F.; Zhang, S. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 2019, 102, 72–108. [Google Scholar] [CrossRef]
- Feng, M.; Feng, Y.; Zhang, T.; Li, J.; Chen, Q.; Chi, Q.; Lei, Q. Recent Advances in Multilayer-Structure Dielectrics for Energy Storage Application. Adv. Sci. 2021, 8, 2102221. [Google Scholar] [CrossRef]
- Zheng, T.; Wu, J.; Xiao, D.; Zhu, J. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 2018, 98, 552–624. [Google Scholar] [CrossRef]
- Diao, C.; Liu, H.; Lou, G.; Zheng, H.; Yao, Z.; Hao, H.; Cao, M. Structure and electric properties of sandwich-structured SrTiO3/BiFeO3 thin films for energy storage applications. J. Alloys Compd. 2019, 781, 378–384. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Y.; Wang, C.-M.; Ouyang, J. Boosting energy storage performance of low-temperature sputtered CaBi2Nb2O9 thin film capacitors via rapid thermal annealing. J. Adv. Ceram. 2021, 10, 627–635. [Google Scholar] [CrossRef]
- Haeni, J.H.; Irvin, P.; Chang, W.; Uecker, R.; Reiche, P.; Li, Y.L.; Choudhury, S.; Tian, W.; Hawley, M.E.; Craigo, B.; et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 2004, 430, 758–761. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Yao, M.; Chen, J.; Zou, P.; Peng, Y.; Li, F.; Yao, X. Effect of crystallization on the band structure and photoelectric property of SrTiO3 sol–gel derived thin film. J. Alloys Compd. 2015, 653, 7–13. [Google Scholar] [CrossRef]
- Trabelsi, H.; Bejar, M.; Dhahri, E.; Graça, M.P.F.; Valente, M.A.; Khirouni, K. Structure, Raman, dielectric behavior and electrical conduction mechanism of strontium titanate. Phys. E Low-Dimens. Syst. Nanostructures 2018, 99, 75–81. [Google Scholar] [CrossRef]
- Balachandran, R.; Ong, B.H.; Wong, H.Y.; Tan, K.B.; Rasat, M.M. Dielectric Characteristics of Barium Strontium Titanate Based Metal Insulator Metal Capacitor for Dynamic Random Access Memory Cell. Int. J. Electrochem. Sci. 2012, 7, 11895–11903. [Google Scholar]
- Trabelsi, H.; Bejar, M.; Dhahri, E.; Sajieddine, M.; Valente, M.A.; Zaoui, A. Effect of the oxygen deficiencies creation on the suppression of the diamagnetic behavior of SrTiO3 compound. J. Alloys Compd. 2016, 680, 560–564. [Google Scholar] [CrossRef]
- Hou, C.; Huang, W.; Zhao, W.; Zhang, D.; Yin, Y.; Li, X. Ultrahigh Energy Density in SrTiO3 Film Capacitors. ACS Appl. Mater. Interfaces 2017, 9, 20484–20490. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huang, B.; Liu, Y.; Wang, W.; Yu, P. High energy density and high efficiency achieved in the Ca0.74Sr0.26Zr0.7Ti0.3O3 linear dielectric thin films on the silicon substrates. Appl. Phys. Lett. 2020, 117, 112902. [Google Scholar] [CrossRef]
- Diao, C.; Liu, H.; Hao, H.; Cao, M.; Yao, Z. Enhanced recoverable energy storage density of Mn-doped Ba0.4Sr0.6TiO3 thin films prepared by spin-coating technique. J. Mater. Sci. Mater. Electron. 2018, 29, 5814–5819. [Google Scholar] [CrossRef]
- Qian, J.; Yang, C.H.; Han, Y.J.; Sun, X.S.; Chen, L.X. Reduced leakage current, enhanced energy storage and dielectric properties in (Ce,Mn)-codoped Ba0.6Sr0.4TiO3 thin film. Ceram. Int. 2018, 44, 20808–20813. [Google Scholar] [CrossRef]
- Benes, F.; Dragomir, M.; Malič, B.; Deluca, M. Chemical Solution Deposition of BaxSr1-xTiO3 Thin Films for Energy Storage Applications. Proceedings 2020, 56, 9. [Google Scholar]
- Diao, C.; Liu, H.; Hao, H.; Cao, M.; Yao, Z.; Zheng, H. Dielectric, ferroelectric properties and photoconductivity effect of sol-gel grown SrTiO3/BaTiO3 thin film heterostructure. Ceram. Int. 2018, 44, 12157–12161. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Sun, H.; Sui, H.; Yan, C. Enhanced recoverable energy storage density of barium strontium titanate-based thin films with compositionally graded structure. J. Mater. Sci. Mater. Electron. 2021, 32, 2193–2199. [Google Scholar] [CrossRef]
- Gao, W.; Yao, M.; Yao, X. Achieving Ultrahigh Breakdown Strength and Energy Storage Performance through Periodic Interface Modification in SrTiO3 Thin Film. ACS Appl. Mater. Interfaces 2018, 10, 28745–28753. [Google Scholar] [CrossRef] [PubMed]
- Diao, C.; Li, H.; Yang, Y.; Hao, H.; Yao, Z.; Liu, H. Significantly improved energy storage properties of sol-gel derived Mn-modified SrTiO3 thin films. Ceram. Int. 2019, 45, 11784–11791. [Google Scholar] [CrossRef]
- Khassaf, H.; Khakpash, N.; Vijayan, S.; Aindow, M.; Alpay, S.P. Electrostatically driven dielectric anomaly in mesoscopic ferroelectric–paraelectric bilayers. Acta Mater. 2016, 105, 68–74. [Google Scholar] [CrossRef]
- Pan, H.; Ma, J.; Ma, J.; Zhang, Q.; Liu, X.; Guan, B.; Gu, L.; Zhang, X.; Zhang, Y.J.; Li, L. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 2018, 9, 1813. [Google Scholar] [CrossRef] [Green Version]
- Cole, M.W.; Ngo, E.; Hubbard, C.; Hirsch, S.G.; Ivill, M.; Sarney, W.L.; Zhang, J.; Alpay, S.P. Enhanced dielectric properties from barium strontium titanate films with strontium titanate buffer layers. J. Appl. Phys. 2013, 114, 164107. [Google Scholar] [CrossRef]
- Xie, J.; Hao, H.; Yao, Z.; Zhang, L.; Xu, Q.; Liu, H.; Cao, M. Energy storage properties of low concentration Fe-doped barium strontium titanate thin films. Ceram. Int. 2018, 44, 5867–5873. [Google Scholar] [CrossRef]
- Pertsev, N.A.; Zembilgotov, A.G.; Hoffmann, S.; Waser, R.; Tagantsev, A.K. Ferroelectric thin films grown on tensile substrates: Renormalization of the Curie–Weiss law and apparent absence of ferroelectricity. J. Appl. Phys. 1999, 85, 1698–1701. [Google Scholar] [CrossRef]
- Aguirre-Tostado, F.S.; Herrera-Gómez, A.; Woicik, J.C.; Droopad, R.; Yu, Z.; Schlom, D.G.; Karapetrova, J.; Zschack, P.; Pianetta, P. Displacive phase transition in SrTiO3 thin films grown on Si (001). J. Vac. Sci. Technol. A Vac. Surf. Film. 2004, 22, 1356–1360. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Weiss, C.V.; Alpay, S.P. Effect of thermal stresses on the dielectric properties of strontium titanate thin films. Appl. Phys. Lett. 2011, 99, 31386. [Google Scholar] [CrossRef]
- Tkach, A.; Okhay, O.; Reaney, I.M.; Vilarinho, P.M. Mechanical strain engineering of dielectric tunability in polycrystalline SrTiO3 thin films. J. Mater. Chem. C 2018, 6, 2467–2475. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Li, W.; Zhao, Y.; Yu, Y.; Fei, W. High Energy Storage Performance of Opposite Double-Heterojunction Ferroelectricity-Insulators. Adv. Funct. Mater. 2018, 28, 1706211. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Qiao, Y.; Zhao, Y.; Wang, Z.; Yu, Y.; Xia, H.; Li, Z.; Fei, W. 0.6ST-0.4NBT thin film with low level Mn doping as a lead-free ferroelectric capacitor with high energy storage performance. Appl. Phys. Lett. 2018, 112, 093902. [Google Scholar] [CrossRef]
- Yang, C.; Han, Y.; Qian, J.; Lv, P.; Lin, X.; Huang, S.; Cheng, Z. Flexible, Temperature-Resistant, and Fatigue-Free Ferroelectric Memory Based on Bi(Fe0.93Mn0.05Ti0.02)O3 Thin Film. ACS Appl. Mater. Interfaces 2019, 11, 12647–12655. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, N.; Yang, B.; Zhao, S. Segregation particles induced ultrahigh energy storage performances in BiMnO3 modified BaTiO3 films. Appl. Phys. Lett. 2019, 114, 253901. [Google Scholar] [CrossRef]
- Li, P.; Zhai, J.; Shen, B.; Li, W.; Zeng, H.; Zhao, K. High recoverable energy storage density and large piezoelectric response in (Bi0.5Na0.5) TiO3 -PbTiO3 thin films prepared by a sol-gel method. J. Eur. Ceram. Soc. 2017, 37, 3319–3327. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Lee, D.; Lu, H.; Gu, Y.; Choi, S.Y.; Li, S.D.; Ryu, S.; Paudel, T.R.; Song, K.; Mikheev, E.; Lee, S.; et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 2015, 349, 1314–1317. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Zhu, K.; Yan, H.; Xu, L.; Shen, B.; Zhai, J. High energy storage density with high power density in Bi0.2Sr0.7TiO3/BiFeO3 multilayer thin films. J. Mater. Chem. C 2021, 9, 4652–4660. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, H.; Hao, H.; Cao, M.; Yao, Z.; Xie, J.; Diao, C. The microstructure and energy storage properties of Ba0.3Sr0.7TiO3 crystallite thin films. J. Alloys Compd. 2019, 792, 1013–1020. [Google Scholar] [CrossRef]
- Diao, C.; Liu, H.; Li, Z.; Yao, Z.; Hao, H.; Cao, M. Simultaneously achieved high energy storage density and efficiency in sol-gel-derived amorphous Mn-doped SrTiO3 thin films. J. Alloys Compd. 2020, 845, 5814–5819. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, Y.; Zhai, X.; Xue, Y.; Hao, L.; Zhu, H.; Liu, C.; Cheng, H.; Ouyang, J. Energy Storage Properties of Sol–Gel-Processed SrTiO3 Films. Materials 2023, 16, 31. https://doi.org/10.3390/ma16010031
Liu J, Wang Y, Zhai X, Xue Y, Hao L, Zhu H, Liu C, Cheng H, Ouyang J. Energy Storage Properties of Sol–Gel-Processed SrTiO3 Films. Materials. 2023; 16(1):31. https://doi.org/10.3390/ma16010031
Chicago/Turabian StyleLiu, Jinpeng, Ying Wang, Xiao Zhai, Yinxiu Xue, Lanxia Hao, Hanfei Zhu, Chao Liu, Hongbo Cheng, and Jun Ouyang. 2023. "Energy Storage Properties of Sol–Gel-Processed SrTiO3 Films" Materials 16, no. 1: 31. https://doi.org/10.3390/ma16010031
APA StyleLiu, J., Wang, Y., Zhai, X., Xue, Y., Hao, L., Zhu, H., Liu, C., Cheng, H., & Ouyang, J. (2023). Energy Storage Properties of Sol–Gel-Processed SrTiO3 Films. Materials, 16(1), 31. https://doi.org/10.3390/ma16010031