Mechanical Properties of New Generations of Monolithic, Multi-Layered Zirconia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Mechanical Properties Assessment
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
- Within the limitations of this in vitro study design, flexural strength and fracture toughness was significantly higher for Katana™ HTML in comparison to Katana™ STML and UTML;
- The correlation between fracture toughness and bending strength corresponds to that proposed by Filser et al. [2] and shows that the use of the IF technique to determine KIc seems relatively reliable and thus suitable as a basis for the indication;
- The range of indications based on these data should be carefully considered when selecting the type of monolithic zirconia material for fabrication of dental restorations, as materials widely differ in mechanical properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Filser, F.; Kocher, P.; Weibel, F.; Luthy, H.; Scharer, P.; Gauckler, L.J. Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM). Int. J. Comput. Dent. 2001, 4, 89–106. [Google Scholar] [PubMed]
- Denry, I.; Kelly, J.R. Emerging ceramic-based materials for dentistry. J. Dent. Res. 2014, 93, 1235–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urapepon, S.; Taenguthai, P. The effect of zirconia framework design on the failure of all-ceramic crown under static loading. J. Adv. Prosthodont. 2015, 7, 146–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preis, V.; Behr, M.; Hahnel, S.; Handel, G.; Rosentritt, M. In vitro failure and fracture resistance of veneered and full-contour zirconia restorations. J. Dent. 2012, 40, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Schley, J.S.; Heussen, N.; Reich, S.; Fischer, J.; Haselhuhn, K.; Wolfart, S. Survival probability of zirconia-based fixed dental prostheses up to 5 yr: A systematic review of the literature. Eur. J. Oral Sci. 2010, 118, 443–450. [Google Scholar] [CrossRef]
- Guess, P.C.; Schultheis, S.; Bonfante, E.A.; Coelho, P.G.; Ferencz, J.L.; Silva, N.R. All-ceramic systems: Laboratory and clinical performance. Dent. Clin. N. Am. 2011, 55, 333–352. [Google Scholar] [CrossRef]
- Ioannidis, A.; Bindl, A. Clinical prospective evaluation of zirconia-based three-unit posterior fixed dental prostheses: Up-to ten-year results. J. Dent. 2016, 47, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Pjetursson, B.E.; Sailer, I.; Makarov, N.A.; Zwahlen, M.; Thoma, D.S. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs. Dent. Mater. 2015, 31, 624–639. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lawn, B.R. Novel Zirconia Materials in Dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef]
- Tong, H.; Tanaka, C.B.; Kaizer, M.R.; Zhang, Y. Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area. Ceram. Int. 2016, 42, 1077–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y. Making yttria-stabilized tetragonal zirconia translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stawarczyk, B.; Keul, C.; Eichberger, M.; Figge, D.; Edelhoff, D.; Lumkemann, N. Three generations of zirconia: From veneered to monolithic. Part II. Quintessence Int. 2017, 48, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Oilo, M.; Kvam, K.; Tibballs, J.E.; Gjerdet, N.R. Clinically relevant fracture testing of all-ceramic crowns. Dent. Mater. 2013, 29, 815–823. [Google Scholar] [CrossRef]
- Quinn, J.B.; Quinn, G.D. A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent. Mater. 2010, 26, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Kolakarnprasert, N.; Kaizer, M.R.; Kim, D.K.; Zhang, Y. New multi-layered zirconias: Composition, microstructure and translucency. Dent. Mater. 2019, 35, 797–806. [Google Scholar] [CrossRef]
- Rinke, S.; Fischer, C. Range of indications for translucent zirconia modifications: Clinical and technical aspects. Quintessence Int. 2013, 44, 557–566. [Google Scholar] [CrossRef]
- Beuer, F.; Stimmelmayr, M.; Gueth, J.F.; Edelhoff, D.; Naumann, M. In vitro performance of full-contour zirconia single crowns. Dent. Mater. 2012, 28, 449–456. [Google Scholar] [CrossRef]
- Dietrich Munz, T.F. Mechanisches Verhalten Keramischer Werkstoffe: Versagensablauf, Werkstoffauswahl, Dimensionierung; Springer: Berlin, Germany, 2013; Volume 8. [Google Scholar]
- Kwon, S.J.; Lawson, N.C.; McLaren, E.E.; Nejat, A.H.; Burgess, J.O. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J. Prosthet. Dent. 2018, 120, 132–137. [Google Scholar] [CrossRef]
- Carrabba, M.; Keeling, A.J.; Aziz, A.; Vichi, A.; Fabian Fonzar, R.; Wood, D.; Ferrari, M. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test. J. Dent. 2017, 60, 70–76. [Google Scholar] [CrossRef]
- Camposilvan, E.; Leone, R.; Gremillard, L.; Sorrentino, R.; Zarone, F.; Ferrari, M.; Chevalier, J. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent. Mater. 2018, 34, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Abdulmajeed, A.; Sulaiman, T.; Abdulmajeed, A.; Bencharit, S.; Narhi, T. Fracture Load of Different Zirconia Types: A Mastication Simulation Study. J. Prosthodont. 2020, 29, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Wendler, M.; Belli, R.; Petschelt, A.; Mevec, D.; Harrer, W.; Lube, T.; Danzer, R.; Lohbauer, U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent. Mater. 2017, 33, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Aboushelib, M.N.; Feilzer, A.J. Strength influencing variables on CAD/CAM zirconia frameworks. Dent. Mater. 2008, 24, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Cesar, P.F.; Della Bona, A.; Scherrer, S.S.; Tholey, M.; van Noort, R.; Vichi, A.; Kelly, R.; Lohbauer, U. ADM guidance-Ceramics: Fracture toughness testing and method selection. Dent. Mater. 2017, 33, 575–584. [Google Scholar] [CrossRef]
- Anstis, G.C.P.; Lawn, B.; Marshall, D. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements. J. Am. Ceram. Soc. 1981, 64, 533–538. [Google Scholar] [CrossRef]
- Michailova, M.; Elsayed, A.; Fabel, G.; Edelhoff, D.; Zylla, I.M.; Stawarczyk, B. Comparison between novel strength-gradient and color-gradient multilayered zirconia using conventional and high-speed sintering. J. Mech. Behav. Biomed. Mater. 2020, 111, 103977. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung. DIN EN ISO 6872, Zahnheilkunde—Keramische Werkstoffe (ISO 6872:2015 + Amd, 1:2018): Dentistry—Ceramic Materials (ISO 6872:2015 +Amd. 1:2018); Beuth Verlag GmbH: Berlin, Germany, 2019. [Google Scholar]
- Baldi, A.; Comba, A.; Ferrero, G.; Italia, E.; Michelotto Tempesta, R.; Paolone, G.; Mazzoni, A.; Breschi, L.; Scotti, N. External gap progression after cyclic fatigue of adhesive overlays and crowns made with high translucency zirconia or lithium silicate. J. Esthet. Restor. Dent. 2022, 34, 557–564. [Google Scholar] [CrossRef]
- Zarone, F.; Ferrari, M.; Mangano, F.G.; Leone, R.; Sorrentino, R. “Digitally Oriented Materials”: Focus on Lithium Disilicate Ceramics. Int. J. Dent. 2016, 2016, 9840594. [Google Scholar] [CrossRef]
Zirconia Material | Wt.-% Cubic Phase | Grain Size in µm | Flexural Strength (MPa) | Translucency 1 (%) | Elastic Modulus (GPa) |
---|---|---|---|---|---|
KATANA HTML [LOT: DQVMR] | <50 | 0.63 (±0.03) | 1125 | 31 | 214 |
KATANA STML [LOT: DRYQY] | ~65 | 2.81 (±0.17) | 748 | 38 | 217 |
KATANA UTML [LOT: DQUGC] | ~75 | 4.05 (±0.85) | 557 | 43 | 217 |
Flexural Strength σ [MPa] | ||||||
L1 (Mean ± SD) | L2 (Mean ± SD) | L3 (Mean ± SD) | L4 (Mean ± SD) | All Layers (Mean ± SD) | ||
HTML | 0.4 mm | 652.85 ± 143.76 C | 764.15 ± 119.97 ABC | 744.55 ± 143.76 BC | 761.38 ± 107.06 ABC | 733.51 ± 136.81 D |
0.8 mm | 716.71 ± 69.62 BC | 723.55 ± 100.23 BC | 754.83 ± 133.22 ABC | 669.54 ± 86.11 BC | 715.27 ± 103.24 D | |
1.2 mm | 794.72 ± 93.37 AB | 887.64 ± 118.95 A | 751.84 ± 105.96 BC | 761.14 ± 67.35 ABC | 792.79 ± 108.23 E | |
STML | 0.4 mm | 309.72 ± 66.38 AB | 322.90 ± 136.42 AB | 317.60 ± 146.17 AB | 280.17 ± 83.41 B | 307.31 ± 111.03 D |
0.8 mm | 362.92 ± 57.12 AB | 435.95 ± 73.58 A | 380.22 ± 115.32 AB | 387.48 ± 75.80 AB | 388.71 ± 115.00 E | |
1.2 mm | 361.34 ± 53.50 AB | 424.50 ± 76.68 AB | 414.84 ± 76.66 A | 335.25 ± 72.55 AB | 379.48 ± 76.30 E | |
UTML | 0.4 mm | 287.97 ± 84.11 A | 273.84 ± 57.98 A | 263.89 ± 77.80 A | 258.25 ± 109.98 A | 270.99 ± 82.44 D |
0.8 mm | 285.94 ± 63.08 A | 284.41 ± 38.56 A | 331.09 ± 35.11 A | 279.52 ± 31.24 A | 283.78 ± 58.44 DE | |
1.2 mm | 297.95 ± 37.68 A | 280.33 ± 22.45 A | 331.26 ± 56.86 A | 292.35 ± 38.53 A | 300.67 ± 43.78 E | |
Vickers Hardness HV [MPa] | ||||||
L1 (Mean ± SD) | L2 (Mean ± SD) | L3 (Mean ± SD) | L4 (Mean ± SD) | All Layers (Mean ± SD) | ||
HTML | 0.4 mm | 1379.83 ± 9.41 A | 1354.5 ± 26.94 A | 1387.17 ± 15.25 A | 1396 ± 31.63 A | 1379.38 ± 17.85 |
0.8 mm | 1374.67 ± 18.13 A | 1379.5 ± 19.15 A | 1386.83 ± 22.40 A | 1379.17 ± 24.88 A | 1380.04 ± 5.03 | |
1.2 mm | 1382.4 ± 12.25 A | 1365.5 ± 19.34 A | 1379.33 ± 18.98 A | 1375.00 ± 20.72 A | 1375.56 ± 7.36 | |
STML | 0.4 mm | 1373.5 ± 15.71 AB | 1415.67 ± 28.61 A | 1378.83 ± 6.43 AB | 1407.67 ± 30.81 A | 1393.92 ± 20.87 |
0.8 mm | 1384.17 ± 22.95 AB | 1403.67 ± 55.38 A | 1371.5 ± 22.58 AB | 1379.17 ± 24.31 AB | 1384.63 ± 13.72 | |
1.2 mm | 1364 ± 18.67 AB | 1367.5 ± 19.81 AB | 1343.83 ± 22.59 B | 1360.83 ± 35.14 AB | 1359.04 ± 10.50 | |
UTML | 0.4 mm | 1370.33 ± 15.97 AB | 1409.5 ± 48.13 AB | 1346.17 ± 19.34 B | 1376.67 ± 40.84 AB | 1375.67 ± 26.10 |
0.8 mm | 1333.83 ± 18.49 B | 1441.5 ± 62.79 A | 1349.83 ± 47.00 B | 1374.67 ± 35.89 AB | 1374.96 ± 47.44 | |
1.2 mm | 1353.83 ± 20.91 B | 1364.5 ± 37.68 B | 1369.83 ± 35.13 AB | 1354 ± 35.94 B | 1360.54 ± 7.95 | |
Fracture toughness KIc [MPa√m] | ||||||
L1 (Mean ± SD) | L2 (Mean ± SD) | L3 (Mean ± SD) | L4 (Mean ± SD) | All Layers (Mean ± SD) | ||
HTML | 0.4 mm | 4.27 ± 0.47 A | 4.48 ± 0.60 A | 4.42 ± 0.48 A | 4.36 ± 0.62 A | 4.38 ± 0.09 |
0.8 mm | 4.32 ± 0.32 A | 4.73 ± 0.59 A | 4.74 ± 0.97 A | 4.53 ± 0.61 A | 4.58 ± 0.20 | |
1.2 mm | 4.98 ± 0.80 A | 4.61 ± 0.68 A | 4.87 ± 0.80 A | 4.85 ± 0.81 A | 4.83 ± 0.16 | |
STML | 0.4 mm | 3.41 ± 0.59 A | 3.26 ± 0.48 A | 3.18 ± 0.46 A | 3.05 ± 0.27 A | 3.23 ± 0.15 |
0.8 mm | 3.83 ± 0.47 A | 3.38 ± 0.50 A | 3.09 ± 0.11 A | 3.16 ± 0.83 A | 3.37 ± 0.33 | |
1.2 mm | 3.19 ± 0.51 A | 3.50 ± 0.38 A | 3.39 ± 0.64 A | 3.35 ± 0.61 A | 3.36 ± 0.13 | |
UTML | 0.4 mm | 2.58 ± 0.67 A | 2.90 ± 0.81 A | 2.75 ± 0.48 A | 2.66 ± 0.29 A | 2.72 ± 0.14 |
0.8 mm | 2.61 ± 0.36 A | 2.74 ± 0.29 A | 2.54 ± 0.32 A | 2.52 ± 0.27 A | 2.60 ± 0.10 | |
1.2 mm | 2.66 ± 0.31 A | 2.94 ± 0.33 A | 2.34 ± 0.31 A | 2.77 ± 0.34 A | 2.68 ± 0.25 |
Weibull Modulus m | ||||||
L1 | L2 | L3 | L4 | All layers | ||
HTML | 0.4 mm | 5.27 | 7.53 | 9.35 | 8.48 | 6.02 |
0.8 mm | 9.18 | 11.95 | 8.67 | 6.52 | 8.54 | |
1.2 mm | 9.36 | 6.42 | 9.95 | 8.70 | 8.96 | |
STML | 0.4 mm | 5.22 | 2.60 | 2.12 | 3.63 | 5.84 |
0.8 mm | 7.43 | 6.71 | 3.88 | 3.73 | 6.07 | |
1.2 mm | 7.77 | 6.15 | 6.97 | 5.43 | 6.03 | |
UTML | 0.4 mm | 3.81 | 4.63 | 3.41 | 2.84 | 5.71 |
0.8 mm | 5.15 | 6.88 | 7.71 | 8.13 | 5.73 | |
1.2 mm | 9.21 | 14.90 | 7.00 | 8.89 | 5.76 | |
Characteristic Weibull strength σw [MPa] | ||||||
L1 | L2 | L3 | L4 | All layers | ||
HTML | 0.4 mm | 708.76 | 813.95 | 813.24 | 806.14 | 790.93 |
0.8 mm | 727.39 | 756.97 | 764.95 | 809.97 | 757.08 | |
1.2 mm | 705.52 | 907.26 | 835.06 | 938.73 | 837.41 | |
STML | 0.4 mm | 336.55 | 364.39 | 364.26 | 311.71 | 344.04 |
0.8 mm | 379.92 | 467.00 | 420.42 | 415.66 | 433.16 | |
1.2 mm | 384.17 | 456.80 | 455.64 | 363.58 | 415.37 | |
UTML | 0.4 mm | 319.54 | 300.80 | 295.47 | 290.00 | 300.75 |
0.8 mm | 310.91 | 297.26 | 337.71 | 292.32 | 309.06 | |
1.2 mm | 314.20 | 290.11 | 354.06 | 308.69 | 318.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruhnke, M.; Awwad, Y.; Müller, W.-D.; Beuer, F.; Schmidt, F. Mechanical Properties of New Generations of Monolithic, Multi-Layered Zirconia. Materials 2023, 16, 276. https://doi.org/10.3390/ma16010276
Bruhnke M, Awwad Y, Müller W-D, Beuer F, Schmidt F. Mechanical Properties of New Generations of Monolithic, Multi-Layered Zirconia. Materials. 2023; 16(1):276. https://doi.org/10.3390/ma16010276
Chicago/Turabian StyleBruhnke, Maria, Yasmin Awwad, Wolf-Dieter Müller, Florian Beuer, and Franziska Schmidt. 2023. "Mechanical Properties of New Generations of Monolithic, Multi-Layered Zirconia" Materials 16, no. 1: 276. https://doi.org/10.3390/ma16010276