Evaluation of Tooth Movement Accuracy with Aligners: A Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
- Adult patients (>18 years) who had no previous orthodontic treatment;
- Absence of local and systemic conditions or ongoing pharmacological treatment that can affect the tooth movement process;
- Non-extractive orthodontic treatment;
- Crowding up to 7 mm per arch;
- Absence of tooth shape anomalies;
- Absence of supernumerary teeth;
- Absence of tooth rotation more than 35°;
- Spaces up to 7 mm per arch;
- Good oral hygiene with absence of an active periodontal disease.
2.1. Orthodontic Treatment Protocol
- 2° for rotation.
- 2.5° for mesio-distal and buccal-lingual tip.
- 0.25 mm for linear displacements.
2.2. Study Protocol: Measurements of Digital Model
- The tip of the mesio-buccal cusp of tooth 16.
- The tip of the mesio-buccal cusp of tooth 26.
- The centroid of all occlusal points of the FACC of teeth 15, 14, 12, 11, 21, 22, 24 and 25; canines will be excluded from this calculation as their occlusal FACC point is generally outside the occlusal plane identified by the other teeth.
2.3. Study Variables: Analysis of Prescription, Achieved Tooth Movement and Performance
- Prescription was calculated as the difference between ideal post-treatment (T15i) and pre-treatment (T0) measurements, to identify the amount in degrees of the planned movement:Absolute Prescription = |ideal posttreatment−pretreatment|;
- Achieved movement was calculated as the difference between real post-treatment (T15) and pre-treatment (T0) measurements:Absolute Achieved movement = |real posttreatment—pretreatment|
- Performance was calculated as the difference between Achieved movement and Prescription:Absolute Performance = |Achieved movement − Prescription|
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosvall, M.D.; Fields, H.W.; Ziuchkovski, J.; Rosenstiel, S.F.; Johnston, W.M. Attractiveness, acceptability, and value of orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 276.e1. [Google Scholar] [CrossRef] [PubMed]
- Kuo, E.; Miller, R.J. Automated custom-manufacturing technology in orthodontics. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 578–581. [Google Scholar] [CrossRef]
- Kesling, H.D. Coordinating the predetermined pattern and tooth positioner with conventional treatment. Am. J. Orthod. Oral Surg. 1946, 32, 285–293. [Google Scholar] [CrossRef]
- Joffe, L. Invisalign®: Early experiences. J. Orthod. 2003, 30, 348–352. [Google Scholar] [CrossRef]
- Bollen, A.-M.; Huang, G.; King, G.; Hujoel, P.; Ma, T. Activation time and material stiffness of sequential removable orthodontic appliances. J. Orthod. Dentofac. Orthop. 2003, 124, 496–501. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, R.; Ni, Z.; Yu, Z. Efficiency, effectiveness and treatment stability of clear aligners: A systematic review and meta-analysis. Orthod. Craniofac. Res. 2017, 20, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Huang, X.; Huo, S.; Zhang, C.; Zhao, S.; Cen, X.; Zhao, Z. Effect of clear aligners on oral health-related quality of life: A systematic review. Orthod. Craniofac. Res. 2020, 23, 363–370. [Google Scholar] [CrossRef]
- Papadimitriou, A.; Mousoulea, S.; Gkantidis, N.; Kloukos, D. Clinical effectiveness of Invisalign® orthodontic treatment: A systematic review. Prog. Orthod. 2018, 19, 37. [Google Scholar] [CrossRef] [Green Version]
- Iliadi, A.; Koletsi, D.; Eliades, T. Forces and moments generated by aligner-type appliances for orthodontic tooth movement: A systematic review and meta-analysis. Orthod. Craniofac. Res. 2019, 22, 248–258. [Google Scholar] [CrossRef]
- Zhang, X.J.; He, L.; Guo, H.M.; Tian, J.; Bai, Y.X.; Li, S. Integrated three-dimensional digital assessment of accuracy of anterior tooth movement using clear aligners. Korean J. Orthod. 2015, 45, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Qi, R.; Liu, C. Root resorption in orthodontic treatment with clear aligners: A systematic review and meta-analysis. Orthod. Craniofac. Res. 2019, 22, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Pango Madariaga, A.C.; Bucci, R.; Rongo, R.; Simeon, V.; D’Antò, V.; Valletta, R. Impact of fixed orthodontic appliance and clear aligners on the periodontal health: A prospective clinical study. Dent. J. 2020, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kravitz, N.D.; Kusnoto, B.; BeGole, E.; Obrez, A.; Agran, B. How well does Invisalign work? A prospective clinical study evaluating the efficacy of tooth movement with Invisalign. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 27–35. [Google Scholar] [CrossRef]
- Lombardo, L.; Arreghini, A.; Ramina, F.; Huanca Ghislanzoni, L.T.; Siciliani, G. Predictability of orthodontic movement with orthodontic aligners: A retrospective study. Prog. Orthod. 2017, 18, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galan-Lopez, L.; Barcia-Gonzalez, J.; Plasencia, E. A systematic review of the accuracy and efficiency of dental movements with Invisalign®. Korean J. Orthod. 2019, 49, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, N.D.; Kusnoto, B.; Agran, B.; Viana, G. Influence of attachments and interproximal reduction on the accuracy of canine rotation with Invisalign. A prospective clinical study. Angle Orthod. 2008, 78, 682–687. [Google Scholar] [CrossRef] [Green Version]
- Tamburrino, F.; D’Antò, V.; Bucci, R.; Alessandri-Bonetti, G.; Barone, S.; Razionale, A.V. Mechanical Properties of Thermoplastic Polymers for Aligner Manufacturing: In Vitro Study. Dent. J. 2020, 8, 47. [Google Scholar] [CrossRef]
- Savignano, R.; Valentino, R.; Razionale, A.V.; Michelotti, A.; Barone, S.; D’Antò, V. Biomechanical Effects of Different Auxiliary-Aligner Designs for the Extrusion of an Upper Central Incisor: A Finite Element Analysis. J. Healthc. Eng. 2019, 2019, 9687127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucci, R.; Rongo, R.; Levatè, C.; Michelotti, A.; Barone, S.; Razionale, A.V.; D’Antò, V. Thickness of orthodontic clear aligners after thermoforming and after 10 days of intraoral exposure: A prospective clinical study. Prog. Orthod. 2019, 20, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martina, S.; Rongo, R.; Bucci, R.; Razionale, A.V.; Valletta, R.; D’Antò, V. In vitro cytotoxicity of different thermoplastic materials for clear aligners. Angle Orthod. 2019, 89, 942–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerard Bradley, T.; Teske, L.; Eliades, G.; Zinelis, S.; Eliades, T. Do the mechanical and chemical properties of InvisalignTM appliances change after use? A retrieval analysis. Eur. J. Orthod. 2016, 38, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, M.; Arqub, S.A. Biomechanics of clear aligners: Hidden truths & first principles. J. World Fed. Orthod. 2021, 11, 12–21. [Google Scholar] [PubMed]
- Hansa, I.; Semaan, S.J.; Vaid, N.R. Clinical outcomes and patient perspectives of Dental Monitoring® GoLive® with Invisalign®-a retrospective cohort study. Prog. Orthod. 2020, 21, 16. [Google Scholar] [CrossRef] [PubMed]
- D’Antò, V.; Muraglie, S.; Castellano, B.; Candida, E.; Sfondrini, M.F.; Scribante, A.; Grippaudo, C. Influence of Dental Composite Viscosity in Attachment Reproduction: An Experimental in Vitro Study. Materials 2019, 12, 4001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huanca Ghislanzoni, L.T.; Lineberger, M.; Cevidanes, L.H.S.; Mapelli, A.; Sforza, C.; McNamara, J.A. Evaluation of tip and torque on virtual study models: A validation study. Prog. Orthod. 2013, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Dahlberg, G. Statistical Methods for Medical and Biological Students; George Alien and Unwin, Ltd.: London, UK, 1940; Volume 98. [Google Scholar]
- Weir, T. Clear aligners in orthodontic treatment. Aust. Dent. J. 2017, 62, 58–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, L.; Kaur, H.; Fagundes, N.C.F.; Romanyk, D.; Major, P.; Flores Mir, C. Effectiveness of clear aligner therapy for orthodontic treatment: A systematic review. Orthod. Craniofac. Res. 2020, 23, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Haouili, N.; Kravitz, N.D.; Vaid, N.R.; Ferguson, D.J.; Makki, L. Has Invisalign improved? A prospective follow-up study on the efficacy of tooth movement with Invisalign. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Rossini, G.; Parrini, S.; Castroflorio, T. Efficacy of Clear Aligners in Controlling Orthodontic Tooth Movement: A Systematic Review. Angle Orthod. 2015, 85, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Charalampakis, O.; Iliadi, A.; Ueno, H.; Oliver, D.R.; Kim, K.B. Accuracy of clear aligners: A retrospective study of patients who needed refinement. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 47–54. [Google Scholar] [CrossRef]
- Miller, R.J.; Kuo, E.; Choi, W. Validation of align technology’s treat III TM digital model superimposition tool and its case application. Orthod. Craniofacial Res. 2003, 6, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Shaikh, A.; Fida, M. Stability of Palatal Rugae as a Forensic Marker in Orthodontically Treated Cases. J. Forensic Sci. 2016, 61, 1351–1355. [Google Scholar] [CrossRef] [PubMed]
- Ganzer, N.; Feldmann, I.; Liv, P.; Bondemark, L. A novel method for superimposition and measurements on maxillary digital 3D models-studies on validity and reliability. Eur. J. Orthod. 2018, 40, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.; Keilig, L.; Schwarze, J.; Jung, B.A.; Bourauel, C. Treatment outcome and efficacy of an aligner technique-regarding incisor torque, premolar derotation and molar distalization. BMC Oral Health 2014, 14, 68. [Google Scholar] [CrossRef] [Green Version]
Tooth | Torque | Tip | Rotation | |||
---|---|---|---|---|---|---|
Dahlberg | t Test | Dahlberg | t Test | Dahlberg | t Test | |
11 | 0.26 | 0.864 | 0.89 | 0.943 | 0.75 | 0.846 |
12 | 0.43 | 0.961 | 0.78 | 0.855 | 3.82 | 0.117 |
13 | 0.51 | 0.935 | 0.89 | 0.946 | 0.72 | 0.941 |
14 | 0.74 | 0.997 | 1.23 | 0.845 | 1.35 | 0.905 |
15 | 0.87 | 0.895 | 1.14 | 0.811 | 1.24 | 0.979 |
16 | 1.03 | 0.673 | 1.2 | 0.433 | 1.48 | 0.843 |
17 | 0.89 | 0.740 | 1.33 | 0.934 | 0.83 | 0.788 |
21 | 0.26 | 0.960 | 0.69 | 0.98 | 0.64 | 0.909 |
22 | 0.27 | 0.965 | 0.75 | 0.763 | 2.45 | 0.387 |
23 | 0.39 | 0.891 | 0.76 | 0.749 | 0.99 | 0.907 |
24 | 0.74 | 0.964 | 0.61 | 0.55 | 1.27 | 0.806 |
25 | 0.89 | 0.940 | 1.23 | 0.92 | 1.27 | 0.634 |
26 | 0.76 | 0.961 | 1.02 | 0.767 | 1.11 | 0.817 |
27 | 0.64 | 0.941 | 1.47 | 0.944 | 1.13 | 0.835 |
Tooth | Number of Teeth | Mean Prescription (°) | Standard Deviation (°) | Mean Achieved Movement (°) | Standard Deviation (°) | p-Value | |
---|---|---|---|---|---|---|---|
Torque | Central incisors | 34 | 3.2 | 3.3 | 3.6 | 3.6 | NS |
Lateral incisors | 34 | 2.8 | 2.3 | 2.8 | 2.8 | NS | |
Canines | 34 | 1.9 | 1.5 | 2.4 | 2.2 | NS | |
First premolars | 34 | 2.8 | 2.6 | 3.0 | 2.1 | NS | |
Second premolars | 34 | 3.0 | 2.3 | 3.3 | 3.1 | NS | |
First molars | 34 | 2.9 | 3.1 | 2.7 | 2.9 | NS | |
Second molars | 34 | 2.6 | 2.1 | 3.0 | 2.8 | NS | |
All | 238 | 2.8 | 2.5 | 2.8 | 2.8 | NS | |
Tip | Central incisors | 34 | 2.7 | 2.4 | 2.5 | 2.2 | NS |
Lateral incisors | 34 | 2.9 | 2.7 | 3.1 | 2.4 | NS | |
Canines | 34 | 2.8 | 2.2 | 3.3 | 2.4 | NS | |
First premolars | 34 | 2.4 | 1.9 | 2.8 | 2.5 | NS | |
Second premolars | 34 | 3.3 | 2.9 | 3.0 | 2.5 | NS | |
First molars | 34 | 5.7 | 11.5 | 5.7 | 11.1 | NS | |
Second molars | 34 | 4.0 | 2.7 | 4.1 | 3.5 | NS | |
All | 238 | 3.4 | 5.0 | 3.5 | 4.9 | NS | |
Rotation | Central incisors | 34 | 4.1 | 3.9 | 4.5 | 4.0 | NS |
Lateral incisors | 34 | 3.2 | 3.4 | 3.2 | 3.1 | NS | |
Canines | 34 | 3.0 | 2.3 | 3.5 | 3.0 | NS | |
First premolars | 34 | 3.8 | 3.2 | 3.5 | 3.1 | NS | |
Second premolars | 34 | 4.1 | 2.7 | 4.6 | 3.8 | NS | |
First molars | 34 | 5.2 | 10.3 | 5.3 | 10.7 | NS | |
Second molars | 34 | 3.4 | 2.3 | 3.0 | 2.3 | NS | |
All | 238 | 3.8 | 4.8 | 3.9 | 5.0 | NS |
Tooth | Number of Teeth | Mean Performance (°) | Standard Deviation (°) | FOPE Performance ≤ 1 n (%) | FOPE 1 < Performance ≤ 2 n (%) | FOPE 2 < Performance ≤ 4 n (%) | FOPE Performance > 4 n (%) | |
---|---|---|---|---|---|---|---|---|
Torque | Central incisors | 34 | 2.2 | 1.8 | 12 | 6 | 12 | 4 |
(35.3%) | (17.6%) | (35.3%) | (11.8%) | |||||
Lateral incisors | 34 | 2.3 | 1.8 | 7 | 11 | 9 | 7 | |
(20.6%) | (32.3%) | (26.5%) | (20.6%) | |||||
Canines | 34 | 2.1 | 1.6 | 12 | 6 | 10 | 6 | |
(35.3%) | (17.6%) | (29.4%) | (17.6%) | |||||
First premolars | 34 | 2.1 | 1.5 | 10 | 11 | 8 | 5 | |
(29.4%) | (32.3%) | (23.5%) | (14.7%) | |||||
Second premolars | 34 | 2.7 | 1.9 | 10 | 3 | 13 | 8 | |
(29.4%) | (8.8%) | (38.2%) | (23.5%) | |||||
First molars | 34 | 2.8 | 2.1 | 11 | 2 | 11 | 10 | |
(32.3%) | (5.9%) | (32.3%) | (29.4%) | |||||
Second molars | 34 | 3.2 | 2.0 | 6 | 5 | 15 | 8 | |
(17.6%) | (14.7%) | (44.1%) | (23.5%) | |||||
All | 238 | 2.5 | 1.8 | 68 | 44 | 78 | 48 | |
(28.6%) | (18.5%) | (32.8%) | (20.2%) | |||||
Tip | Central incisors | 34 | 2.1 | 1.8 | 11 | 10 | 8 | 5 |
(32.3%) | (29.4%) | (23.5%) | (14.7%) | |||||
Lateral incisors | 34 | 3.3 | 2.5 | 11 | 3 | 6 | 14 | |
(32.3%) | (8.8%) | (17.6%) | (41.2%) | |||||
Canines | 34 | 2.3 | 1.9 | 10 | 9 | 9 | 6 | |
(29.4%) | (26.5%) | (26.5%) | (17.6%) | |||||
First premolars | 34 | 2.8 | 1.8 | 5 | 11 | 9 | 9 | |
(14.7%) | (32.3%) | (26.5%) | (26.5%) | |||||
Second premolars | 34 | 2.4 | 1.9 | 9 | 9 | 10 | 6 | |
(26.5%) | (26.5%) | (29.4%) | (17.6%) | |||||
First molars | 34 | 3.3 | 2.4 | 7 | 6 | 10 | 11 | |
(20.6%) | (17.6%) | (29.4%) | (32.3%) | |||||
Second molars | 34 | 3.8 | 2.7 | 8 | 4 | 7 | 15 | |
(23.5%) | (11.8%) | (20.6%) | (44.1%) | |||||
All | 238 | 2.9 | 2.2 | 61 | 52 | 59 | 66 | |
(25.6%) | (21.8%) | (24.8%) | (27.7%) | |||||
Rotation | Central incisors | 34 | 1.8 | 1.4 | 11 | 14 | 6 | 3 |
(32.3%) | (41.2%) | (17.6%) | (8.8%) | |||||
Lateral incisors | 34 | 2.3 | 1.9 | 11 | 8 | 11 | 4 | |
(32.3%) | (23.5%) | (32.3%) | (11.8%) | |||||
Canines | 34 | 2.8 | 1.7 | 5 | 7 | 15 | 7 | |
(14.7%) | (20.6%) | (44.1%) | (20.6%) | |||||
First premolars | 34 | 2.6 | 1.9 | 8 | 11 | 6 | 9 | |
(23.5%) | (32.3%) | (17.6%) | (26.5%) | |||||
Second premolars | 34 | 3.2 | 2.3 | 5 | 10 | 9 | 10 | |
(14.7%) | (29.4%) | (26.5%) | (29.4%) | |||||
First molars | 34 | 2.0 | 1.4 | 10 | 5 | 16 | 3 | |
(29.4%) | (14.7%) | (47.0%) | (8.8%) | |||||
All | Second molars | 34 | 3.1 | 1.9 | 9 | 4 | 9 | 12 |
(26.5%) | (11.8%) | (26.5%) | (35.3%) | |||||
All | 238 | 2.5 | 1.8 | 59 | 59 | 72 | 48 | |
(24.8%) | (24.8%) | (30.2%) | (20.2%) | |||||
Total | 714 | 2.6 | 2.0 | 188 | 155 | 209 | 162 | |
(26.3%) | (21.7%) | (29.3%) | (22.7%) |
Under-Performance | Right-Performance | Iper-Performance | ||
---|---|---|---|---|
TORQUE | 60 | 68 | 110 | 238 |
TIP | 112 | 61 | 65 | 238 |
ROTATION | 87 | 59 | 92 | 238 |
259 | 188 | 267 | 714 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Antò, V.; Bucci, R.; De Simone, V.; Huanca Ghislanzoni, L.; Michelotti, A.; Rongo, R. Evaluation of Tooth Movement Accuracy with Aligners: A Prospective Study. Materials 2022, 15, 2646. https://doi.org/10.3390/ma15072646
D’Antò V, Bucci R, De Simone V, Huanca Ghislanzoni L, Michelotti A, Rongo R. Evaluation of Tooth Movement Accuracy with Aligners: A Prospective Study. Materials. 2022; 15(7):2646. https://doi.org/10.3390/ma15072646
Chicago/Turabian StyleD’Antò, Vincenzo, Rosaria Bucci, Vincenzo De Simone, Luis Huanca Ghislanzoni, Ambrosina Michelotti, and Roberto Rongo. 2022. "Evaluation of Tooth Movement Accuracy with Aligners: A Prospective Study" Materials 15, no. 7: 2646. https://doi.org/10.3390/ma15072646