Pressure-Induced Bandgap Engineering and Tuning Optical Responses of Cd0.25Zn0.75S Alloy for Optoelectronic and Photovoltaic Applications
Abstract
:1. Introduction
2. Theoretical Method
3. Results and Discussions
3.1. Electronic Properties
3.2. Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colak, S. Devices and Applications of II-VI Compounds. In II-VI Semiconductor Compounds; World Scientific: Singapore, 1993; pp. 397–426. [Google Scholar]
- Adachi, S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 0470744391. [Google Scholar]
- Reddy, K.T.R.; Reddy, P.J. Studies of ZnxCd1−xS films and ZnxCd1−xS/CuGaSe2 heterojunction solar cells. J. Phys. D Appl. Phys. 1992, 25, 1345. [Google Scholar] [CrossRef]
- Benkabou, F.; Aourag, H.; Certier, M. Atomistic study of zinc-blende CdS, CdSe, ZnS, and ZnSe from molecular dynamics. Mater. Chem. Phys. 2000, 66, 10–16. [Google Scholar] [CrossRef]
- Pham, P.V.; Bodepudi, S.C.; Shehzad, K.; Liu, Y.; Xu, Y.; Yu, B.; Duan, X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem. Rev. 2022, 122, 6514–6613. [Google Scholar] [CrossRef] [PubMed]
- Pham, V.P.; Nguyen, M.T.; Park, J.W.; Kwak, S.S.; Nguyen, D.H.T.; Mun, M.K.; Phan, H.D.; San Kim, D.; Kim, K.H.; Lee, N.-E. Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity. 2D Mater. 2017, 4, 25049. [Google Scholar] [CrossRef] [Green Version]
- Razykov, T.M. Physical properties of II–VI binary and multi-component compound films and heterostructures fabricated by chemical vapour deposition. Thin Solid Films 1988, 164, 301–308. [Google Scholar] [CrossRef]
- Sadovnikov, S.I. Preparation and Morphology of CdZnS Thin Films. Int. J. Nanosci. 2019, 18, 1940060. [Google Scholar] [CrossRef]
- Orori, M.C. Electrical and Optical Characterization of CdxZn1−xS and PbS Thin Films for Photovoltaic Applications. Ph.D. Thesis, Kenyatta University, Nairobi, Kenya, 2012. [Google Scholar]
- Muradov, M.B.; Gahramanli, L.R.; Balayeva, O.O.; Nasibov, I.N.; Eyvazova, G.M.; Amiraslanov, I.R.; Aghamaliyev, Z.A. Formation mechanism of CdxZn1−xS/PVA nanocomposites by SILAR method. Results Phys. 2020, 18, 103280. [Google Scholar] [CrossRef]
- Gahramanli, L.; Muradov, M.; Kukovecz, Á.; Balayeva, O.; Eyvazova, G. Influence of stabilizers on the structure and properties of CdxZn1−xS nanoparticles by sonochemical method. Inorg. Nano-Metal Chem. 2020, 50, 808–815. [Google Scholar] [CrossRef]
- Li, W.; Li, D.; Chen, Z.; Huang, H.; Sun, M.; He, Y.; Fu, X. High-efficient degradation of dyes by ZnxCd1−xS solid solutions under visible light irradiation. J. Phys. Chem. C 2008, 112, 14943–14947. [Google Scholar] [CrossRef]
- Seoudi, R.; Shabaka, A.; Eisa, W.H.; Anies, B.; Farage, N.M. Effect of the prepared temperature on the size of CdS and ZnS nanoparticle. Phys. B Condens. Matter 2010, 405, 919–924. [Google Scholar] [CrossRef]
- Loukanov, A.R.; Dushkin, C.D.; Papazova, K.I.; Kirov, A.V.; Abrashev, M.V.; Adachi, E. Photoluminescence depending on the ZnS shell thickness of CdS/ZnS core-shell semiconductor nanoparticles. Coll. Surf. A Physicochem. Eng. Asp. 2004, 245, 9–14. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, D.S.; Park, J. Chemical conversion reaction between CdS nanobelts and ZnS nanobelts by vapor transport. Chem. Mater. 2007, 19, 4663–4669. [Google Scholar] [CrossRef]
- Joishy, S.; Antony, A.; Poornesh, P.; Choudhary, R.J.; Rajendra, B. V Influence of Cd on structure, surface morphology, optical and electrical properties of nano crystalline ZnS films. Sensors Actuators A Phys. 2020, 303, 111719. [Google Scholar] [CrossRef]
- Karar, N.; Jayaswal, M.; Halder, S.K.; Chander, H. Photoluminescence shifts in silver-doped nanocrystalline Cd1−xZnxS. J. Alloys Compd. 2007, 436, 61–64. [Google Scholar] [CrossRef]
- Solis, O.E.; Rivas, J.M.; Lopez-Luke, T.; Zarazua, I.; de la Torre, J.; Esparza, D. Synthesis of Alloyed Cd1−xZnxS Quantum Dots for Photovoltaic Applications. IEEE J. Photovolt. 2020, 10, 1319–1328. [Google Scholar] [CrossRef]
- Ouyang, J.; Ratcliffe, C.I.; Kingston, D.; Wilkinson, B.; Kuijper, J.; Wu, X.; Ripmeester, J.A.; Yu, K. Gradiently Alloyed ZnxCd1−xS Colloidal Photoluminescent Quantum Dots Synthesized via a Noninjection One-Pot Approach. J. Phys. Chem. C 2008, 112, 4908–4919. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhu, H.; Wang, X.; Cui, D.; Gao, Z.; Su, D.; Zhao, J.; Chen, O. Cu-catalyzed synthesis of CdZnSe–CdZnS alloy quantum dots with highly tunable emission. Chem. Mater. 2019, 31, 2635–2643. [Google Scholar] [CrossRef]
- Abd El-Rahman, A.A.; Mandouh, F.I.; Mohammed, M.B.; Adel, G.H.; Mahmoud, E.A. Structural and Optical Properties of Cd1−xZnxS Alloy Quantum Dots. Al-Azhar Bull. Sci. 2015, 26, 1–16. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Xiao, L.; Kurbanjan, D.; Nie, H.; Du, H. Cation exchange synthesis of porous Cd1−xZnxS twinned nanosheets for visible light highly active H2 evolution. J. Am. Ceram. Soc. 2022, 105, 1405–1416. [Google Scholar] [CrossRef]
- Ibrahim, S.; Ghosh, S.; Pal, T. Large area thin film optoelectronic device application of RGO-Cd0.25Zn0.75S nano composite. AIP Conf. Proc. 2020, 2265, 30499. [Google Scholar]
- Gotipamul, P.; Dilly Rajan, K.; Khanna, S.; Rathinam, M.; Chidambaram, S. Bandgap engineering and plasmonically enhanced sun light photocatalyis in Au/Cd1−xZnxS nanocomposites. J. Mater. Sci. Mater. Electron. 2021, 3, 1–12. [Google Scholar] [CrossRef]
- Ul Aarifeen, N.; Afaq, A. Theoretical Prediction of Thermodynamic Properties of CdxZn1-xS (0≤ x ≤1) under the Effects of Pressure (0–10 GPa) and Temperature (0–1200 K). Acta. Phys. Pol. A 2020, 137, 332–338. [Google Scholar] [CrossRef]
- Ul Aarifeen, N.; Afaq, A. Lattice thermal conductivity of CdxZn1−xX (X = O, S, Se, Te) from first principles. Mater. Chem. Phys. 2020, 251, 123099. [Google Scholar] [CrossRef]
- Korozlu, N.; Colakoglu, K.; Deligoz, E. The effects of concentration on the electronic and optical properties in CdxZn1−xS ternary alloys. Phys. Stat. Solidi (b) 2010, 247, 1214–1219. [Google Scholar] [CrossRef]
- Noor, N.A.; Ikram, N.; Ali, S.; Nazir, S.; Alay-e-Abbas, S.M.; Shaukat, A. First-principles calculations of structural, electronic and optical properties of CdxZn1−xS alloys. J. Alloys Compd. 2010, 507, 356–363. [Google Scholar] [CrossRef]
- Bouarissa, N. The effect of hydrostatic pressure on the electronic and optical properties of InP. Solid-State Electron. 2000, 44, 2193–2198. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Madsen, G.K.H.; Kvasnicka, D.; Luitz, J. WIEN2k. An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties; Vienna University of Technology: Vienna, Austria, 2001. [Google Scholar]
- Iqbal, M.A.; Ashraf, N.; Shahid, W.; Afzal, D.; Idrees, F.; Ahmad, R. Fundamentals of Density Functional Theory: Recent Developments, Challenges and Future Horizons; IntechOpen: London, UK, 2021. [Google Scholar]
- Singh, D.J. Electronic structure calculations with the Tran-Blaha modified Becke-Johnson density functional. Phys. Rev. B 2010, 82, 205102. [Google Scholar] [CrossRef] [Green Version]
- Sahli, B.; Bouafia, H.; Abidri, B.; Bouaza, A.; Akriche, A.; Hiadsi, S.; Abdellaoui, A. Study of hydrostatic pressure effect on structural, mechanical, electronic and optical properties of KMgF3, K0.5Na0.5MgF3 and NaMgF3 cubic fluoro-perovskites via ab initio calculations. Int. J. Mod. Phys. B 2016, 30, 1650230. [Google Scholar] [CrossRef]
- Nourbakhsh, Z. Structural, electronic and optical properties of ZnX and CdX compounds (X = Se, Te and S) under hydrostatic pressure. J. Alloys Compd. 2010, 505, 698–711. [Google Scholar] [CrossRef]
- Engel, E.; Vosko, S.H. Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys. Rev. B 1993, 47, 13164. [Google Scholar] [CrossRef]
- Iranmanesh, P.; Saeednia, S.; Khorasanipoor, N. Tunable properties of cadmium substituted ZnS nanocrystals. Mater. Sci. Semicond. Process. 2017, 68, 193–198. [Google Scholar] [CrossRef]
- Ramasamy, V.; Praba, K.; Murugadoss, G. Synthesis and study of optical properties of transition metals doped ZnS nanoparticles. Spectroc. Acta Part A Mol. Biomol. Spectrosc. 2012, 96, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Fox, M. Optical properties of solids. Am. J. Phys. 2002, 70, 1269–1270. [Google Scholar] [CrossRef]
- Johnson, D.W. A Fourier series method for numerical Kramers-Kronig analysis. J. Phys. A Math. Gen. 1975, 8, 490. [Google Scholar] [CrossRef]
- Penn, D.R. Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 1962, 128, 2093. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, M.A.; Ahmad, A.; Malik, M.; Choi, J.R.; Pham, P.V. Pressure-Induced Bandgap Engineering and Tuning Optical Responses of Cd0.25Zn0.75S Alloy for Optoelectronic and Photovoltaic Applications. Materials 2022, 15, 2617. https://doi.org/10.3390/ma15072617
Iqbal MA, Ahmad A, Malik M, Choi JR, Pham PV. Pressure-Induced Bandgap Engineering and Tuning Optical Responses of Cd0.25Zn0.75S Alloy for Optoelectronic and Photovoltaic Applications. Materials. 2022; 15(7):2617. https://doi.org/10.3390/ma15072617
Chicago/Turabian StyleIqbal, Muhammad Aamir, Afaq Ahmad, Maria Malik, Jeong Ryeol Choi, and Phuong V. Pham. 2022. "Pressure-Induced Bandgap Engineering and Tuning Optical Responses of Cd0.25Zn0.75S Alloy for Optoelectronic and Photovoltaic Applications" Materials 15, no. 7: 2617. https://doi.org/10.3390/ma15072617
APA StyleIqbal, M. A., Ahmad, A., Malik, M., Choi, J. R., & Pham, P. V. (2022). Pressure-Induced Bandgap Engineering and Tuning Optical Responses of Cd0.25Zn0.75S Alloy for Optoelectronic and Photovoltaic Applications. Materials, 15(7), 2617. https://doi.org/10.3390/ma15072617