Magneto-Thermoelastic Response in an Unbounded Medium Containing a Spherical Hole via Multi-Time-Derivative Thermoelasticity Theories
Abstract
:1. Introduction
2. Basic Equations
- The equations of motion:
- The constitutive equations:
- The heat conduction equation:
3. Formulation of the Problem
4. Closed-Form Solution
- The surface of the spherical hole is subjected to a constant heat
- The mechanical boundary condition is respected as the surface of the spherical hole is traction free
5. Validation
5.1. First Justification
- The G–N model provides the lowest absolute value of all variables. It may vanish at some positions.
- The other CTE and L–S models provide appropriate outcomes for all variables.
- Triplet values N = 3, 4, and 5 are utilized for the RDPL model while the SDPL model is defined with N = 1.
- Extremely exact outcomes are provided utilizing the RDPL model.
- For the RDPL model the temperature, displacement, and circumferential stress slightly increase as the value of N increases, while volumetric strain, radial stress, and circumferential stress slightly decrease. All variables may be insensitive to the higher values of N especially when N ≥ 5.
5.2. Second Justification
5.3. The Influence of Dimensionless Time
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
thermal expansion | |
specific heat | |
Kronecker’s delta | |
circumferential strains | |
radial strain | |
volumetric strain (dilatation) | |
strain tensor components | |
velocity of heat source | |
thermal modulus | |
Heaviside’s unit step function | |
initial magnetic field | |
heat conductivity | |
rate of thermal conductivity | |
Lame’s constants | |
electric permeability | |
density | |
radius of the spherical hole | |
spherical coordinates system | |
stress tensor components | |
shear stresses | |
circumferential stresses | |
radial stress | |
Laplace parameter | |
temperature change | |
thermal constant | |
environment temperature | |
phase-lag of heat flux | |
phase-lag of temperature gradient | |
first relaxation time | |
angular frequency of thermal vibration | |
strength of heat source | |
delta function | |
heat flux vector | |
radial displacement | |
circumferential displacements |
References
- Maxwell, J. On the dynamical theory of gases. J. Phil. Trans. Roy. Soc. Lond. 1867, 157, 49–88. [Google Scholar]
- Cattaneo, C. Sulla conduzione del calore. Atti Del Semin. Matem. E Fis. Della Univ. Modena 1948, 3, 83–101. [Google Scholar]
- Dhaliwal, R.; Sherief, H. Generalized thermoelasticity for anisotropic media. Quart. Appl. Math. 1980, 33, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Biot, M.A. Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 1956, 27, 240–253. [Google Scholar] [CrossRef]
- Lord, H.W.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 1967, 15, 299–309. [Google Scholar] [CrossRef]
- Banerjee, S.; Roychoudhuri, S.K. Spherically symmetric thermo-visco-elastic waves in a visco-elastic medium with a spherical cavity. Comput. Math. Appl. 1995, 30, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.B.; Elsibai, K.A. Thermal stresses for an infinite body with spherical cavity with two relaxation times. J. Therm. Stresses 1996, 19, 495–510. [Google Scholar] [CrossRef]
- Rakshit Kundu, M.; Mukhopadhyay, B. A thermoviscoelastic problem of an infinite medium with a spherical cavity using generalized theory of thermoelasticity. Math. Comput. Model. 2005, 41, 25–32. [Google Scholar] [CrossRef]
- Youssef, H.M. Generalized thermoelastic infinite medium with spherical cavity subjected to moving heat source. Comput. Math. Model. 2010, 21, 212–225. [Google Scholar] [CrossRef]
- Elhagary, M.A. Generalized thermoelastic diffusion problem for an infinite medium with a spherical cavity. Int. J. Thermophys. 2012, 33, 172–183. [Google Scholar] [CrossRef]
- Karmakar, R.; Sur, A.; Kanoria, M. Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags. J. Appl. Mech. Tech. Phys. 2016, 57, 652–665. [Google Scholar] [CrossRef]
- Green, A.E.; Naghdi, P.M. A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. A 1991, 432, 171–194. [Google Scholar]
- Green, A.E.; Naghdi, P.M. On undamped heat waves in an elastic solid. J. Therm. Stresses 1992, 15, 253–264. [Google Scholar] [CrossRef]
- Green, A.E.; Naghdi, P.M. Thermoelasticity without energy dissipation. J. Elast. 1993, 31, 189–208. [Google Scholar] [CrossRef]
- Mukhopadhyay, S. Thermoelastic interactions without energy dissipation in an unbounded medium with a spherical cavity due to a thermal shock at the boundary. J. Therm. Stresses 2002, 25, 877–887. [Google Scholar] [CrossRef]
- Mukhopadhyay, S. Thermoelastic interactions without energy dissipation in an unbounded body with a spherical cavity subjected to harmonically varying temperature. Mech. Res. Commun. 2004, 31, 81–89. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Kumar, R. A study of generalized thermoelastic interactions in an unbounded medium with a spherical cavity. Comput. Math. Appl. 2008, 56, 2329–2339. [Google Scholar] [CrossRef] [Green Version]
- Allam, M.N.; Elsibai, K.A.; Abouelregal, A.E. Magneto-thermoelasticity for an infinite body with a spherical cavity and variable material properties without energy dissipation. Int. J. Solids Struct. 2010, 47, 2631–2638. [Google Scholar] [CrossRef] [Green Version]
- Banik, S.; Kanoria, M. Two-temperature generalized thermoelastic interactions in an infinite body with a spherical cavity. Int. J. Thermophys. 2011, 32, 1247–1270. [Google Scholar] [CrossRef]
- Abbas, I.A. A GN model based upon two-temperature generalized thermoelastic theory in an unbounded medium with a spherical cavity. Appl. Math. Comput. 2014, 245, 108–115. [Google Scholar] [CrossRef]
- Bera, M.B.; Das, N.C.; Lahiri, A. Thermoelastic wave with energy dissipation in an unbounded medium with a spherical cavity. J. Therm. Stresses 2014, 37, 1482–1494. [Google Scholar] [CrossRef]
- Biswas, S. Thermoelastic interaction in unbounded transversely isotropic medium containing spherical cavity with energy dissipation. Indian J. Phys. 2021, 95, 705–716. [Google Scholar] [CrossRef]
- Chandrasekharaiah, D.S.; Narasimha Murthy, H. Thermoelastic interactions in an unbounded body with a spherical cavity. J. Therm. Stresses 1993, 16, 55–70. [Google Scholar] [CrossRef]
- Green, A.E.; Lindsay, K.A. Thermoelasticity. J. Elast. 1972, 2, 1–7. [Google Scholar] [CrossRef]
- Roy Choudhuri, S.K.; Chatterjee, G. Spherically symmetric thermoelastic waves in a temperature-rate dependent medium with a spherical cavity. Comput. Math. Appl. 1990, 20, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sherief, H.H.; Darwish, A.A. A short time solution for a problem in thermoelasticity of an infinite medium with a spherical cavity. J. Therm. Stresses 1998, 21, 811–828. [Google Scholar] [CrossRef]
- Mukhopadhyay, S. Relaxation effects on thermally induced vibrations in a generalized thermoviscoelastic medium with a spherical cavity. J. Therm. Stresses 1999, 22, 829–840. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Kanoria, M. Generalized thermoelastic functionally graded spherically isotropic solid containing a spherical cavity under thermal shock. Appl. Math. Mech.-Engl. Ed. 2008, 29, 1263–1278. [Google Scholar] [CrossRef]
- Kanoria, M.; Ghosh, M.K. Study of dynamic response in a functionally graded spherically isotropic hollow sphere with temperature dependent elastic parameters. J. Therm. Stresses 2010, 33, 459–484. [Google Scholar] [CrossRef]
- Das, B.; Lahiri, A. A generalized thermoelastic problem of functionally graded spherical cavity. J. Therm. Stresses 2015, 38, 1183–1198. [Google Scholar] [CrossRef]
- Tzou, D.Y. A unified approach for heat conduction from macro- to micro-scales. J. Heat Transf. 1995, 117, 8–16. [Google Scholar] [CrossRef]
- Tzou, D.Y. Macro- to Microscale Heat Transfer: The Lagging Behavior, 2nd, ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Abouelregal, A.E.; Abo-Dahab, S.M. Dual phase lag model on magneto-thermoelasticity infinite non-homogeneous solid having a spherical cavity. J. Therm. Stresses 2012, 35, 820–841. [Google Scholar] [CrossRef]
- Hobiny, A.D.; Abbas, I.A. A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole. Eur. Phys. J. Plus 2018, 133, 11. [Google Scholar] [CrossRef]
- Mondal, S.; Sur, A. Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses. Waves Random Complex Media 2021, 31, 1835–1858. [Google Scholar] [CrossRef]
- Singh, B.; Sarkar, S.P. State-space approach on two-temperature three-phase-lag thermoelastic medium with a spherical cavity due to memory-dependent derivative. Arch. Appl. Mech. 2021, 91, 3273–3290. [Google Scholar] [CrossRef]
- Sherief, H.H.; Saleh, H.A. A problem for an infinite thermoelastic body with a spherical cavity. Int. J. Eng. Sci. 1998, 36, 473–487. [Google Scholar] [CrossRef]
- Aouadi, M. A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion. Int. J. Solids Struct. 2007, 44, 5711–5722. [Google Scholar] [CrossRef] [Green Version]
- Banik, S.; Kanoria, M. Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical cavity. Appl. Math. Mech.-Engl. Ed. 2012, 33, 483–498. [Google Scholar] [CrossRef]
- Abd-Alla, A.M.; Abo-Dahab, S.M. Effect of rotation and initial stress on an infinite generalized magneto-thermoelastic diffusion body with a spherical cavity. J. Therm. Stresses 2012, 35, 892–912. [Google Scholar] [CrossRef]
- Lotfy, K. A novel solution of fractional order heat equation for photothermal waves in a semiconductor medium with a spherical cavity. Chaos Solitons Fractals 2017, 99, 233–242. [Google Scholar] [CrossRef]
- Sherief, H.H.; Hussein, E.M. Contour integration solution for a thermoelastic problem of a spherical cavity. Appl. Math. Comput. 2018, 320, 557–571. [Google Scholar] [CrossRef]
- Hendy, M.H.; Amin, M.M.; Ezzat, M.A. Magneto-electric interactions without energy dissipation for a fractional thermoelastic spherical cavity. Microsys. Technol. 2018, 24, 2895–2903. [Google Scholar] [CrossRef]
- Sharma, D.K.; Bachher, M.; Sarkar, N. Effect of phase-lags on the transient waves in an axisymmetric functionally graded viscothermoelastic spherical cavity in radial direction. Int. J. Dyn. Control 2021, 9, 424–437. [Google Scholar] [CrossRef]
- Zenkour, A.M. Thermo-diffusion of solid cylinders based upon refined dual-phase-lag models. Multidiscip. Model. Mater. Struct. 2020, 16, 1417–1434. [Google Scholar] [CrossRef]
- Zenkour, A.M. Wave propagation of a gravitated piezo-thermoelastic half-space via a refined multi-phase-lags theory. Mech. Adv. Mater. Struct. 2020, 27, 1923–1934. [Google Scholar] [CrossRef]
- Zenkour, A.M. Thermoelastic diffusion problem for a half-space due to a refined dual-phase-lag Green–Naghdi model. J. Ocean Eng. Sci. 2020, 5, 214–222. [Google Scholar] [CrossRef]
- Zenkour, A.M. Thermal-shock problem for a hollow cylinder via a multi-dual-phase-lag theory. J. Therm. Stresses 2020, 43, 687–706. [Google Scholar] [CrossRef]
- Zenkour, A.M. Exact coupled solution for photothermal semiconducting beams using a refined multi-phase-lag theory. Opt. Laser Technol. 2020, 128, 106233. [Google Scholar] [CrossRef]
- Zenkour, A.M. Thermal diffusion of an unbounded solid with a spherical cavity via refined three-phase-lag Green–Naghdi models. Indian J. Phys. 2022, 96, 1087–1104. [Google Scholar] [CrossRef]
- Kutbi, M.A.; Zenkour, A.M. Refined dual-phase-lag Green–Naghdi models for thermoelastic diffusion in an infinite medium. Waves Random Complex Media 2022, 32, 947–967. [Google Scholar] [CrossRef]
- Zenkour, A.M.; El-Mekawy, H.F. On a multi-phase-lag model of coupled thermoelasticity. Int. Commun. Heat Mass Transf. 2020, 116, 104722. [Google Scholar] [CrossRef]
- Sobhy, M.; Zenkour, A.M. Modified three-phase-lag Green–Naghdi models for thermomechanical waves in an axisymmetric annular disk. J. Therm. Stresses 2020, 43, 1017–1029. [Google Scholar] [CrossRef]
r | t | CTE | G–N | L–S | SDPL | RDPL | ||
---|---|---|---|---|---|---|---|---|
N = 1 | N = 3 | N = 4 | N = 5 | |||||
1.001 | 0.02 | 23.809257 | 3.0601024 | 24.0856 | 23.808792 | 23.808531 | 23.808844 | 23.809054 |
0.03 | 21.299459 | 16.83015 | 21.555949 | 21.29979 | 21.30039 | 21.299517 | 21.295514 | |
0.05 | 16.62998 | 24.126713 | 16.819316 | 16.631298 | 16.631497 | 16.630909 | 16.636946 | |
1.0108 | 0.02 | 9.048562 | −0.1153723 | 8.8444984 | 9.0436695 | 9.0430854 | 9.0508697 | 9.0662687 |
0.03 | 5.9635525 | 7.3662102 | 5.6387135 | 5.9605812 | 5.9665798 | 5.9730733 | 5.9683018 | |
0.05 | 9.6360547 | 7.6797451 | 9.459863 | 9.6357821 | 9.6349646 | 9.6210413 | 9.6310639 | |
1.035 | 0.02 | −0.1538211 | −0.2026603 | −0.4084073 | −0.1628925 | −0.1754834 | −0.1766143 | −0.1722681 |
0.03 | −0.2531288 | −0.2064843 | −0.2693186 | −0.2655987 | −0.2744405 | −0.2676814 | −0.2565349 | |
0.05 | 10.563634 | −0.3048223 | 10.574561 | 10.558 | 10.573683 | 10.573157 | 10.549094 |
r | t | CTE | G–N | L–S | SDPL | RDPL | ||
---|---|---|---|---|---|---|---|---|
N = 1 | N = 3 | N = 4 | N = 5 | |||||
1.02 | 0.02 | 0.016967 | 6.59 × 10−3 | 0.02626 | 0.017492 | 0.018306 | 0.018521 | 0.018544 |
0.03 | −0.06242 | 0.012333 | −0.05158 | −0.06156 | −0.06069 | −0.06086 | −0.06142 | |
0.05 | −0.21674 | 0.023884 | −0.20169 | −0.21541 | −0.21513 | −0.21532 | −0.2143 | |
1.2 | 0.02 | 2.17 × 10−3 | 6.68 × 10−11 | 3.38 × 10−6 | 2.04 × 10−3 | 1.82 × 10−3 | 1.73 × 10−3 | 1.68 × 10−3 |
0.03 | 6.32 × 10−3 | 5.89 × 10−7 | 9.67 × 10−4 | 6.12 × 10−3 | 5.89 × 10−3 | 5.91 × 10−3 | 6.05 × 10−3 | |
0.05 | 0.02141 | 1.46 × 10−6 | 0.018332 | 0.021199 | 0.021304 | 0.021448 | 0.021156 | |
1.4 | 0.02 | 1.09 × 10−4 | 8.19 × 10−19 | 7.92 × 10−8 | 8.52 × 10−5 | 5.03 × 10−5 | 3.80 × 10−5 | 2.83 × 10−5 |
0.03 | 6.20 × 10−4 | 3.73 × 10−12 | 1.20 × 10−6 | 5.33 × 10−4 | 4.03 × 10−4 | 3.58 × 10−4 | 3.26 × 10−4 | |
0.05 | 3.81 × 10−3 | 4.67 × 10−8 | 8.92 × 10−6 | 3.54 × 10−3 | 3.30 × 10−3 | 3.34 × 10−3 | 3.47 × 10−3 |
r | t | CTE | G–N | L–S | SDPL | RDPL | ||
---|---|---|---|---|---|---|---|---|
N = 1 | N = 3 | N = 4 | N = 5 | |||||
1.02 | 0.02 | 12.4075 | 0.765094 | 2.199177 | 12.55818 | 12.92892 | 13.1502 | 13.34968 |
0.03 | 11.96567 | 1.840952 | 14.22474 | 12.14601 | 12.5459 | 12.66462 | 12.52622 | |
0.05 | 11.31646 | 0.063337 | 22.12826 | 11.50767 | 11.8686 | 12.0525 | 12.76183 | |
1.2 | 0.02 | 2.604722 | −2.25 × 10−8 | 0.014782 | 2.510894 | 2.453168 | 2.515533 | 2.661198 |
0.03 | 3.361241 | 1.08 × 10−4 | 4.068197 | 3.310861 | 3.477755 | 3.716377 | 4.020897 | |
0.05 | 4.423428 | −1.49 × 10−4 | 4.010311 | 4.357168 | 4.381843 | 4.120538 | 3.461431 | |
1.4 | 0.02 | 0.325147 | 1.79 × 10−16 | 1.45 × 10−4 | 0.268041 | 0.181612 | 0.14935 | 0.122447 |
0.03 | 0.733066 | 5.64 × 10−9 | 4.00 × 10−4 | 0.660726 | 0.580455 | 0.574048 | 0.591092 | |
0.05 | 1.471241 | 5.49 × 10−5 | 0.06287 | 1.423396 | 1.488998 | 1.566341 | 1.558591 |
r | t | CTE | G–N | L–S | SDPL | RDPL | ||
---|---|---|---|---|---|---|---|---|
N = 1 | N = 3 | N = 4 | N = 5 | |||||
1.02 | 0.02 | −8.18367 | −0.89255 | 2.057934 | −8.34605 | −8.73216 | −8.95355 | −9.14535 |
0.03 | −1.07491 | −2.14559 | −3.37834 | −1.26233 | −1.65585 | −1.75897 | −1.60453 | |
0.05 | −4.01791 | −0.38448 | −15.1083 | −4.2121 | −4.56849 | −4.77181 | −5.5112 | |
1.2 | 0.02 | −2.6318 | 2.61 × 10−8 | −0.01511 | −2.53776 | −2.47972 | −2.54218 | −2.68827 |
0.03 | −3.42287 | −1.26 × 10−4 | −4.15875 | −3.37323 | −3.54214 | −3.78243 | −4.08913 | |
0.05 | −4.57844 | 1.71 × 10−4 | −4.20834 | −4.51548 | −4.54388 | −4.28088 | −3.61623 | |
1.4 | 0.02 | −0.32688 | −2.07 × 10−15 | −1.48 × 10−4 | −0.2695 | −0.1826 | −0.15016 | −0.1231 |
0.03 | −0.74048 | −6.54 × 10−9 | −4.15 × 10−4 | −0.6675 | −0.58625 | −0.57954 | −0.59643 | |
0.05 | −1.50361 | −6.36 × 10−5 | 0.064107 | −1.45493 | −1.52053 | −1.59878 | −1.59192 |
r | t | CTE | G–N | L–S | SDPL | RDPL | ||
---|---|---|---|---|---|---|---|---|
N = 1 | N = 3 | N = 4 | N = 5 | |||||
1.02 | 0.02 | −10.2735 | −0.82254 | −0.03941 | −10.4295 | −10.8072 | −11.0283 | −11.2239 |
0.03 | −6.56734 | −1.98159 | −8.83803 | −6.75038 | −7.14623 | −7.2573 | −7.1114 | |
0.05 | −7.86997 | −0.20094 | −18.8067 | −8.06137 | −8.41975 | −8.61358 | −9.33697 | |
1.2 | 0.02 | −2.61649 | 2.44 × 10−8 | −0.01494 | −2.52266 | −2.46497 | −2.52745 | −2.67337 |
0.03 | −3.38687 | −1.17 × 10−4 | −4.11278 | −3.33703 | −3.50513 | −3.74457 | −4.05007 | |
0.05 | −4.48332 | 1.61 × 10−4 | −4.09433 | −4.41888 | −4.44534 | −4.18307 | −3.52142 | |
1.4 | 0.02 | −0.32594 | −1.93 × 10−15 | −1.46 × 10−4 | −0.26871 | −0.18207 | −0.14973 | −0.12275 |
0.03 | −0.73634 | −6.09 × 10−9 | −4.07 × 10−4 | −0.66374 | −0.58307 | −0.57655 | −0.59354 | |
0.05 | −1.48475 | −5.92 × 10−5 | 0.063495 | −1.43668 | −1.50245 | −1.58022 | −1.57282 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zenkour, A.M.; Mashat, D.S.; Allehaibi, A.M. Magneto-Thermoelastic Response in an Unbounded Medium Containing a Spherical Hole via Multi-Time-Derivative Thermoelasticity Theories. Materials 2022, 15, 2432. https://doi.org/10.3390/ma15072432
Zenkour AM, Mashat DS, Allehaibi AM. Magneto-Thermoelastic Response in an Unbounded Medium Containing a Spherical Hole via Multi-Time-Derivative Thermoelasticity Theories. Materials. 2022; 15(7):2432. https://doi.org/10.3390/ma15072432
Chicago/Turabian StyleZenkour, Ashraf M., Daoud S. Mashat, and Ashraf M. Allehaibi. 2022. "Magneto-Thermoelastic Response in an Unbounded Medium Containing a Spherical Hole via Multi-Time-Derivative Thermoelasticity Theories" Materials 15, no. 7: 2432. https://doi.org/10.3390/ma15072432
APA StyleZenkour, A. M., Mashat, D. S., & Allehaibi, A. M. (2022). Magneto-Thermoelastic Response in an Unbounded Medium Containing a Spherical Hole via Multi-Time-Derivative Thermoelasticity Theories. Materials, 15(7), 2432. https://doi.org/10.3390/ma15072432