Advances in Material Nanosensitization: Refractive Property Changes as the Main Parameter to Indicate Organic Material Physical–Chemical Feature Improvements
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poole, C.P.; Owens, F.J. Introduction to Nanotechnology; Wiley Interscience: New York, NY, USA, 2003; 400p. [Google Scholar]
- Cao, G.; Wang, Y. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, 2nd ed.; World Scientific Series in Nanoscience and Nanotechnology; University of Washington: Seattle, WA, USA, 2011; Volume 2, 596p. [Google Scholar]
- Yang, L.; Li, M.; Zhang, Y.; Yi, K.; Ma, J.; Liu, Y. Synthesis and characterization of polypyrrole nanotubes/multi-walled carbon nanotubes composites with superior electrochemical performance. J. Mater. Sci. Mater. Electron. 2013, 25, 1047–1052. [Google Scholar] [CrossRef]
- Cadek, M.; Coleman, J.N.; Barron, V.; Hedicke, K.; Blau, W.J. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 2002, 81, 5123–5125. [Google Scholar] [CrossRef]
- Seog, J.G.; Ohe, M.; Kim, K.R.; Yoneya, M.; Yokoyama, H.; Itami, S.; Satou, H. A functionally separated nanoimprinting material tailored for homeotropic liquid crystal alignment. Nanotechnology 2008, 19, 395301. [Google Scholar]
- Chen, W.-Z.; Tsai, Y.-T.; Lin, T.-H. Photoalignment effect in a liquid-crystal film doped with nanoparticles and azo-dye. Appl. Phys. Lett. 2009, 94, 201114. [Google Scholar] [CrossRef] [Green Version]
- Wahle, M.; Kasdorf, O.; Kitzerow, H.-S.; Liang, Y.; Feng, X.; Müllen, K. Electrooptic switching in graphene-based liquid crystal cells. Mol. Cryst. Liq. Cryst. 2011, 543, 187–193. [Google Scholar] [CrossRef]
- Das, B.; Eswar Prasad, K.; Ramamurty, U.; Rao, C.N.R. Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 2009, 20, 125705. [Google Scholar] [CrossRef]
- Blanc, C.; Coursault, D.; Lacaze, E. Ordering nano- and microparticles assemblies with liquid crystals. Liq. Cryst. Rev. 2013, 1, 83–109. [Google Scholar] [CrossRef]
- Romyen, N.; Thongyai, S.; Praserthdam, P.; Sotzing, G.A. Enhancement of poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonate) properties by poly(vinyl alcohol) and doping agent as conductive nano-thin film for electronic application. J. Mater. Sci. Mater. Electron. 2013, 24, 2897–2905. [Google Scholar] [CrossRef]
- Gusev, A.N.; Mazinov, A.S.; Tyutyunik, A.S.; Gurchenko, V.S. Spectral and conductive properties of film heterostructures based on fullerene-containing material and 4-methylphenylhydrazone N-isoamilisatine. Nanosystems 2019, 11, 331–336. [Google Scholar] [CrossRef]
- de Brito, E.B.; Valaski, R.; Marques, M.d.V. Development of polymeric active layer for RGB light-emitting devices: A review. J. Mater. Sci. Mater. Electron. 2020, 31, 21856–21895. [Google Scholar] [CrossRef]
- Akhtar, A.J.; Mishra, S.; Saha, S.K. Charge transport mechanism in reduced graphene oxide/polypyrrole based ultrahigh energy density supercapacitor. J. Mater. Sci. Mater. Electron. 2020, 31, 11637–11645. [Google Scholar] [CrossRef]
- Ambriz-Torres, J.M.; Gutierrez-Garcia, C.J.; Garcia-Ruiz, D.L.; Contreras-Navarrete, J.J.; Granados-Martinez, F.G.; Flores-Ramirez, N.; Mondragon-Sanchez, M.L.; Garcia-Gonzalez, L.; Zamora-Peredo, L.; Hernandez-Cristobal, O.; et al. Electrical conductivity and Vickers microhardness of composites synthesized from multiwalled carbon nanotubes and carbon spheres with poly(methyl methacrylate): A comparative study. J. Mater. Sci. Mater. Electron. 2020, 31, 7411–7422. [Google Scholar] [CrossRef]
- Hameed, T.A.; Mohamed, F.; Abdelghany, A.M.; Turky, G. Influence of SiO2 nanoparticles on morphology, optical, and conductivity properties of Poly (ethylene oxide). J. Mater. Sci. Mater. Electron. 2020, 31, 10422–10436. [Google Scholar] [CrossRef]
- Khan, H.U.; Tariq, M.; Shah, M.; Jan, M.T.; Iqbal, M.; Khan, J.; Ahsan, A.R.; Rahim, A. The efficacy of polyvinylpyrrolidone (PVP)/CuO nanocomposite as an appropriate room temperature humidity sensing material: Fabrication of highly sensitive capacitive resistive type humidity sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 7698–7707. [Google Scholar] [CrossRef]
- Wang, T.; Kong, W.-W.; Yu, W.-C.; Gao, J.-F.; Dai, K.; Yan, D.-X.; Li, Z.-M. A Healable and Mechanically Enhanced Composite with Segregated Conductive Network Structure for High-Efficient Electromagnetic Interference Shielding. Nano-Micro Lett. 2021, 13, 162. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, V.I.; Tarasishin, A.V.; Belyaev, V.V.; Trofimov, S.M. Modeling of diffraction of light by structures with spatial periodicity of the optical parameters of the substrate and of the surface relief. J. Opt. Technol. 2003, 70, 465–469. [Google Scholar] [CrossRef]
- Lin, G.-J.; Chen, T.-J.; Lin, Y.-T.; Wu, J.-J.; Yang, Y.-J. Effects of chiral dopant on electro-optical properties of nematic liquid crystal cells under in-plane switching and non-uniform vertical electric fields. Opt. Mater. Express 2014, 4, 2468–2477. [Google Scholar] [CrossRef]
- Macfaden, A.J.; Wilkinson, T.D. Characterization, design, and optimization of a two-pass twisted nematic liquid crystal spatial light modulator system for arbitrary complex modulation. J. Opt. Soc. Am. A 2017, 34, 161–170. [Google Scholar] [CrossRef]
- Kamanina, N.V. Nonlinear optical study of fullerene-doped conjugated systems: New materials for nanophotonics applications. In Proceedings of the NATO Advanced Research Workshop on Organic Nanophotonics, Aix-en-Provence, France, 25–29 August 2003; Volume II/100, pp. 177–192. [Google Scholar]
- Kamanina, N.V. Photoinduced phenomena in fullerene-doped PDLC: Potentials for optoelectronic applications. Opto-Electron. Rev. 2004, 12, 285–289. [Google Scholar]
- Kamanina, N.V. Fullerene-dispersed liquid crystal structure: Dynamic characteristics and self-organization processes. Phys.-Uspekhi 2005, 48, 419–427. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Zubtcova, Y.A.; Kukharchik, A.A.; Lazar, C.; Rau, I. Control of the IR-spectral shift via modification of the surface relief between the liquid crystal matrixes doped with the lanthanide nanoparticles and the solid substrate. Opt. Express 2016, 24, A270–A275. [Google Scholar] [CrossRef] [PubMed]
- Kamanina, N.; Barrientos, A.; Leyderman, A.; Cui, Y.; Vikhnin, V.; Vlasse, M. Effect of fullerene doping on the absorption edge shift in COANP. Mol. Mater. 2000, 13, 275–280. [Google Scholar]
- Kamanina, N.V. Mechanisms of optical limiting in π-conjugated organic system: Fullerene-doped polyimide. Synth. Met. 2002, 127, 121–128. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Kaporskii, L.N.; Sizov, V.N.; Staselko, D.I. Holographic recording in thin C70-doped polymer organic films. Opt. Commun. 2000, 185, 363–367. [Google Scholar] [CrossRef]
- Smith, M.A.G.; Mitchell, G.R.; O’Leary, S.V. Local gratings due to angular hole burning in a photorefractive polymer. J. Opt. A Pure Appl. Opt. 2002, 4, 474–478. [Google Scholar] [CrossRef]
- Khoo, I.C.; Williams, Y.Z.; Lewis, B.; Mallouk, T. Photorefractive CdSe and Gold Nanowire-Doped Liquid Crystals and Polymer-Dispersed-Liquid-Crystal Photonic Crystals. Mol. Cryst. Liq. Cryst. 2006, 446, 233–244. [Google Scholar] [CrossRef]
- Naqash, W.; Majid, K. Fabrication of a novel PANI/[Co(NH3)4(C3H4N2)2]Cl3 nanocomposite with enhanced dielectric constant and acconductivity. J. Mater. Sci. Mater. Electron. 2017, 28, 14217–14225. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Vasilenko, N.A. Influence of operating conditions and of interface properties on dynamic characteristics of liquid-crystal spatial light modulators. Opt. Quantum Electron. 1997, 29, 1–9. [Google Scholar] [CrossRef]
- Ruoff, K.S.; Tse, D.S.; Maihotra, R.; Lorets, D.S. Solubility of C60 in a variety of solvents. J. Phys. Chem. 1993, 97, 3379–3383. [Google Scholar] [CrossRef]
- Inoue, Y.; Hamada, T.; Hasegawa, M.; Hazumi, M.; Hori, Y.; Suzuki, A.; Tomaru, T.; Matsumura, T.; Sakata, T.; Minamoto, T.; et al. Two-layer anti-reflection coating with mullite and polyimide foam for large-diameter cryogenic infrared filters. Appl. Opt. 2016, 55, D22–D28. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, M.; Khastgir, D.; Aldalbahi, A.K. (Eds.) Springer Series on Polymer and Composite Materials; Springer: Singapore, 2019; 574p. [Google Scholar] [CrossRef]
- Suac, H.W.; Chen, W.C. High Refractive Index Polyimide–nanocrystalline-titania: Hybrid Optical Materials. J. Mater. Chem. 2008, 18, 1139–1145. [Google Scholar]
- Bruck, R.; Hainberger, R. Efficient coupling of narrow beams into polyimide waveguides by means of grating couplers with high-index coating. Appl. Opt. 2010, 49, 1972–1978. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.H.; Chang, J.-H. Colorless polyimide nanocomposite films containing hexafluoro-isopropylidene group. Polym. Adv. Technol. 2011, 22, 682–689. [Google Scholar] [CrossRef]
- Tec-Sanchez, J.A.; Alonzo-Medina, G.M.; Maldonado, R.D.; Gamboa, L.; Oliva, A.I.; Oliva-Aviles, A.I. CdS thin films deposited onto a highly transparent co-polyamide. J. Mater. Sci. Mater. Electron. 2020, 31, 6890–6899. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Uskokovic, D.P. Refractive Index of Organic Systems Doped with Nano-Objects. Mater. Manuf. Proc. 2008, 23, 552–556. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Emandi, A.; Kajzar, F.; Attias, A.-J. Laser-Induced Change in the Refractive Index in the Systems Based on Nanostructured Polyimide: Comparative Study with Other Photosensitive Structures. Mol. Cryst. Liq. Cryst. 2008, 486, 1043–1053. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Plekhanov, A.I.; Serov, S.V.; Savinov, V.P.; Shalin, P.A.; Kajzar, F. Correlation Between Photoconductive and Nonlinear Optical Characteristics of Fullerene- and Nanotubes-Doped Organic Composites. Nonlinear Opt. Quantum Opt. 2010, 40, 307–317. [Google Scholar]
- Kamanina, N.V. Carbon Nanotubes Influence on Balk and Surface Properties of the Optical Materials. In Carbon Nanotubes–Polymer Nanocomposites; Yellampalli, S., Ed.; InTech: Rijeka, Croatia, 2011; pp. 355–364. ISBN 978-953-307-498-6. [Google Scholar]
- Kamanina, N.V. The Effect of the Charge Transfer Pathway during Intermolecular Complex Formation on Nonlinear Optical and Photoconducting Properties of Nanocomposites. Tech. Phys. Lett. 2012, 38, 114–117. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Shurpo, N.A.; Likhomanova, S.V.; Timonin, D.N.; Serov, S.V.; Barinov, O.V.; Vasilyev, P.Y.; Studeonov, V.I.; Rozhkova, N.N.; Vaganov, V.E.; et al. Features of the nanostructured composites. In Proceedings of the 10th Israel–Russia Bi-National Workshop, Jerusalem, Israel, 20–23 June 2011; pp. 77–85. [Google Scholar]
- Kamanina, N.V.; Vasilyev, P.Y.; Serov, S.V.; Savinov, V.P.; Bogdanov, K.Y.; Uskokovic, D.P. Nanostructured Materials for Optoelectronic Applications. Acta Phys. Pol. A 2010, 117, 786–790. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Rozhkova, N.N.; Chernozatonskii, L.A.; Shmidt, N.M.; Ferritto, R.; Kajzar, F. Influence of Nanostructuration Process on the Properties of Materials. Nonlinear Opt. Quantum Opt. 2012, 45, 153–160. [Google Scholar]
- Cherkasov, Y.A.; Kamanina, N.V.; Alexandrova, E.L.; Berendyaev, V.I.; Vasilenko, N.A.; Kotov, B.V. Polyimides: New properties of xerographic, thermoplastic, and liquid-crystal structures. In Xerographic Photoreceptors and Organic Photorefractive Materials IV; SPIE: Bellingham, WA, USA, 1998; Volume 3471, pp. 254–260. [Google Scholar] [CrossRef]
- Sherigara, B.S.; Kutner, W.; D’Souza, F. Electrocatalytic Properties and Sensor Applications of Fullerenes and Carbon Nanotubes. Electroanalysis 2003, 15, 753–772. [Google Scholar] [CrossRef]
- Brabec, C.J.; Padinger, F.; Sariciftci, N.S.; Hummelen, J.C. Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix. J. Appl. Phys. 1999, 85, 6866–6872. [Google Scholar] [CrossRef] [Green Version]
- Mikhailova, M.M.; Kosyreva, M.M.; Kamanina, N.V. On the increase in the charge carrier mobility in fullerene-containing conjugated organic systems. Tech. Phys. Lett. 2002, 28, 450–453. [Google Scholar] [CrossRef]
- Kamanina, N.V. Peculiarities of optical limiting effect in π-conjugated organic systems based on 2-cyclooctylamino-5-nitropyridinedoped with C70. J. Opt. A Pure Appl. Opt. 2001, 3, 321–325. [Google Scholar] [CrossRef]
- Kamanina, N.V. Nonlinear optical properties of N-(4-nitrophenyl)-(L)-prolinol doped with fullerenes: Mechanisms of optical limiting. In Nonresonant Laser-Matter Interaction; SPIE: Bellingham, WA, USA, 2001; Volume 4423, pp. 103–107. [Google Scholar]
- Kamanina, N.V.; Iskandarov, M.O.; Nikitichev, A.A. Optical properties of 2-(p-prolinol)-5-nitropyridine–fullerene system in the middle infrared range. Tech. Phys. Lett. 2003, 29, 337–339. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Zubtsova, Y.A.; Shulev, V.A.; Mikhaĭlova, M.M.; Murashov, S.V.; Denisyuk, A.I.; Butyanov, S.V.; Sapurina, I.Y. Self-organization and dynamic characteristics study of nanostructured liquid crystal compounds. Solid State Phenom. 2005, 106, 145–148. [Google Scholar] [CrossRef]
- Akhmanov, S.A.; Nikitin, S.Y. Physical Optics; Izdat. Mosk. Gos. Univ.: Moscow, Russia, 1998. (In Russian) [Google Scholar]
- Kamanina, N.V.; Serov, S.V.; Zubtsova, Y.A.; Bretonniere, Y.; Andraud, C.; Baldeck, P.; Kajzar, F. Photorefractive Properties of Some Nano- and Bio-Structured Organic Materials. J. Nanotechnol. Diagn. Treat. 2014, 2, 2–5. [Google Scholar]
- Kamanina, N.V. Mechanisms of Nonlinear Interaction of Optical Radiation with Fullerene-Containing π-Conjugate Organic Systems: Dissertation. Doctoral Dissertation, Vavilov State Optical Institute, Saint-Petersburg, Russia, 2001. [Google Scholar]
- Kamanina, N.V.; Toikka, A.S.; Zvereva, G.N.; Kuzhakov, P.V.; Barnash, Y.V.; Tarasov, S.A. Surface relief of polyimide thin-film orienting materials for liquid crystalline light modulators. Liq. Cryst. Appl. 2021, 21, 47–52. [Google Scholar] [CrossRef]
- Natalia, V. Nanoparticles doping influence on the organics surface relief. J. Mol. Liq. 2019, 283, 65–68. [Google Scholar] [CrossRef]
- Kamanina, N. Liquid crystal materials orientation using new approach. In Proceedings of the CBU International Conference on Innovations in Science and Education, Prague, Czech Republic, 20–22 March 2019; pp. 933–937. [Google Scholar] [CrossRef]
- Kamanina, N. Some aspects of the materials’ optical limiting features. In Proceedings of the CBU International Conference on Innovations in Science and Education 2020, Natural Sciences and CT, Prague, Czech Republic, 18–20 March 2020; pp. 33–36. [Google Scholar] [CrossRef]
System | c, wt % | λ, nm | Win, J cm−2 | Λ, mm−1 | τ, ns | Δni | References |
---|---|---|---|---|---|---|---|
Pure PI | 0 | 532 | 0.6 | 90 | 20 | 10−4–10−5 | [39] |
PI + malachite green | 0.2 | 532 | 0.5–0.6 | 90–100 | 10–20 | 2.87 × 10−4 | [40] |
PI + CdSe(ZnS) QDs | 0.003 | 532 | 0.2–0.3 | 90–100 | 10 | 2.0 × 10−3 | [41,42] |
PI + CdSe(ZnS) QDs | 0.03 | 532 | 0.2 | 90–100 | 10 | 2.2 × 10−3 | Current data |
PI + shungite | 0.1 | 532 | 0.6 | 100 | 10 | 3.6 × 10−3 | Current data |
PI + shungite | 0.1 | 532 | 0.6 | 150 | 10 | 3.46 × 10−3 | [43] |
PI + shungite | 0.1 | 532 | 0.6 | 170 | 10 | 3.1 × 10−3 | [43] |
PI + shungite | 0.2 | 532 | 0.063–0.1 | 150 | 10 | 3.8–5.3 ×10−3 | [44] |
PI + shungite | 0.2 | 532 | 0.5 | 150 | 10 | 4.6 × 10−3 | Current data |
PI + C60 | 0.2 | 532 | 0.5–0.6 | 90 | 10–20 | 4.2 × 10−3 | [39] |
PI + C70 | 0.2 | 532 | 0.6 | 90 | 10–20 | 4.68 × 10−3 | [39] |
PI + C70 | 0.5 | 532 | 0.6 | 90 | 10–20 | 4.87 × 10−3 | [39] |
PI + CNTs | 0.05 | 532 | 0.3 | 150 | 10 | 4.5 × 10−3 | [45] |
PI + CNTs | 0.1 | 532 | 0.5–0.8 | 90 | 10–20 | 5.7 × 10−3 | [39] |
PI + CNTs | 0.1 | 532 | 0.3 | 150 | 10 | 5.5 × 10−3 | [39,43] |
PI + RGO | 0.1 | 532 | 0.2 | 100 | 10 | 3.4 × 10−3 | [46] |
PI + RGO | 0.1 | 532 | 0.2 | 150 | 10 | 3.1 × 10−3 | Current data |
PDLC based on PI + C70 | 0.1 | 532 | 0.3 | 100 | 10 | 1.15 × 10−3 | Current data |
PDLC based on PI + C70 | 0.2 | 532 | 0.3 | 100 | 10 | 1.35 × 10−3 | Current data |
PDLC based on COANP * + C70 | 5 | 532 | 17.5 × 10−3 | 90–100 | 10–20 | 1.4 × 10−3 | [39] |
PDLC based on COANP + CNTs | 0.5 | 532 | 18.0 × 10−3 | 90–100 | 10–20 | 3.2 × 10−3 | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamanina, N.V. Advances in Material Nanosensitization: Refractive Property Changes as the Main Parameter to Indicate Organic Material Physical–Chemical Feature Improvements. Materials 2022, 15, 2153. https://doi.org/10.3390/ma15062153
Kamanina NV. Advances in Material Nanosensitization: Refractive Property Changes as the Main Parameter to Indicate Organic Material Physical–Chemical Feature Improvements. Materials. 2022; 15(6):2153. https://doi.org/10.3390/ma15062153
Chicago/Turabian StyleKamanina, Natalia V. 2022. "Advances in Material Nanosensitization: Refractive Property Changes as the Main Parameter to Indicate Organic Material Physical–Chemical Feature Improvements" Materials 15, no. 6: 2153. https://doi.org/10.3390/ma15062153
APA StyleKamanina, N. V. (2022). Advances in Material Nanosensitization: Refractive Property Changes as the Main Parameter to Indicate Organic Material Physical–Chemical Feature Improvements. Materials, 15(6), 2153. https://doi.org/10.3390/ma15062153